Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Precious Metal»Room temperature compressed air-stable conductive copper films for flexible electronics
    Precious Metal

    Room temperature compressed air-stable conductive copper films for flexible electronics

    July 27, 202411 Mins Read


  • Haynes, W. M. (Ed.). CRC Handbook of Chemistry and Physics 97th Edn, (CRC Press, 2016).

  • Buga, C. S. & Viana, J. C. The role of printed electronics and related technologies in the development of smart connected products. Flex. Print. Electron. 7, 043001 (2022).

    Article 

    Google Scholar
     

  • Wiklund, J. et al. A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 5, 89 (2021).

    CAS 

    Google Scholar
     

  • Zeng, X. et al. Copper inks for printed electronics: a review. Nanoscale 14, 16003–16032 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. The rise of conductive copper inks: challenges and perspectives. Appl. Mater. Today 18, 100451 (2020).

    Article 

    Google Scholar
     

  • Jung, J. et al. Moiré-Free Imperceptible and Flexible Random Metal Grid Electrodes with Large Figure-of-Merit by Photonic Sintering Control of Copper Nanoparticles. ACS Appl. Mater. Interfaces 11, 15773–15780 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, Y. R. et al. A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics. Int. J. Precis. Eng. Manuf. – Green. Technol. 8, 327–363 (2021).

    Article 

    Google Scholar
     

  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F. & Viana, J. C. Chemistry of solid metal-based inks and pastes for printed electronics – A review. Appl. Mater. Today 15, 416–430 (2019).

    Article 

    Google Scholar
     

  • Woo, K., Kim, Y., Lee, B., Kim, J. & Moon, J. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. ACS Appl. Mater. Interfaces 3, 2377–2382 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, S. et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 18, 679–686 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Stewart, I. E., Ye, S., Chen, Z., Flowers, P. F. & Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-Shell Nanowires and Their Use in Transparent Conducting Films. Chem. Mater. 27, 7788–7794 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, T. G. et al. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes. ACS Appl. Mater. Interfaces 10, 1059–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, G. et al. A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. J. Mater. Chem. A 6, 24805–24813 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z., Ye, S., Stewart, I. E. & Wiley, B. J. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. ACS Nano 8, 9673–9679 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cure, J. et al. Remarkable Decrease in the Oxidation Rate of Cu Nanocrystals Controlled by Alkylamine. Ligands J. Phys. Chem. C. 121, 5253–5260 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tokura, R., Tsukamoto, H., Tokunaga, T., Nguyen, M. T. & Yonezawa, T. The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering. Mater. Adv. 3, 4802–4812 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dabera, G. et al. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat. Commun. 8, 1894 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, H. J., Killalea, C. E., & Amabilino, D. B. Low-Temperature Sintering of L-Alanine-Functionalized Metallic Copper Particles Affording Conductive Films with Excellent Oxidative Stability. ACS Appl. Electron. Mater. 4, 2502–2515 (2022).

  • Lai, H., Wen, J., Yang, G., Zhang, Y. & Cu, C. Mixed Cu Nanoparticles and Cu Microparticles with Promising Low-temperature and Low-pressure Sintering Properties and Inoxidizability for Microelectronic Packaging Applications. in 2021 22nd International Conference on Electronic Packaging Technology, ICEPT 2021 (Institute of Electrical and Electronics Engineers Inc., 2021). https://doi.org/10.1109/ICEPT52650.2021.9568089.

  • Seong, K. et al. An Ultradurable and Uniform Cu Electrode by Blending Carbon Nanotube Fillers in Copper-Based Metal-Organic Decomposition Ink for Flexible Printed Electronics. Adv. Mater. Interfaces 5, 1800502 (2018).

    Article 

    Google Scholar
     

  • Yong, Y. et al. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar
     

  • Kanzaki, M., Kawaguchi, Y. & Kawasaki, H. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. ACS Appl. Mater. Interfaces 9, 20852–20858 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. J., Lee, J., Choi, Y. H., Yeon, D. H. & Byun, Y. Effect of copper concentration in printable copper inks on film fabrication. Thin Solid Films 520, 2731–2734 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y. H. & Hong, S. H. Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu(II) Complex Ink. Langmuir 31, 8101–8110 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X., Zhang, T., Shi, H., Zhang, Y. & Wang, T. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics. ACS Omega 5, 13416–13423 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. et al. Optical Detection of Copper Ions via Structural Dissociation of Plasmonic Sugar Nanoprobes. Anal. Chem. 94, 5521–5529 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, F., Cölfen, H. & Antonietti, M. Interaction of κ-carrageenan with nickel, cobalt, and iron hydroxides. Biomacromolecules 1, 556–563 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, F., Cölfen, H. & Antonietti, M. Iron oxyhydroxide colloids stabilized with polysaccharides. Colloid Polym. Sci. 278, 491–501 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Usov, A. I. Polysaccharides of the red algae. in Advances in Carbohydrate Chemistry and Biochemistry 65 115–217 (Academic Press Inc., 2011).

  • dos Santos, M. A. & Grenha, A. Polysaccharide Nanoparticles for Protein and Peptide Delivery: Exploring Less-Known Materials. in Advances in Protein Chemistry and Structural Biology 98 223–261 (Academic Press Inc., 2015).

  • Liew, J. W. Y., Loh, K. S., Ahmad, A., Lim, K. L. & Wan Daud, W. R. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS One 12, e0185313 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangione, M. R., Giacomazza, D., Bulone, D., Martorana, V. & San Biagio, P. L. Thermoreversible gelation of κ-Carrageenan: Relation between conformational transition and aggregation. Biophys. Chem. 104, 95–105 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C. 112, 1101–1108 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Choudhary, S. et al. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 8, 055114 (2018).

    Article 

    Google Scholar
     

  • Gattinoni, C. & Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–447 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tye, Y. Y., Abdul Khalil H. P. S., Kok, C. Y. & Saurabh, C. K. Preparation and characterization of modified and unmodified carrageenan based films. in IOP Conference Series: Materials Science and Engineering 368 012020 (Institute of Physics Publishing, 2018).

  • Lefez, B., Kartouni, K., Lenglet, M., Rönnow, D. & Ribbing, C. G. Application of reflectance spectrophotometry to the study of copper (I) oxides (Cu2O and Cu3O2) on metallic substrate. Surf. Interface Anal. 22, 451–455 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Berton, S. B. R. et al. Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr. Res. 487, 107883 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. FeS2/carbon hybrids on carbon cloth: A highly efficient and stable counter electrode for dye-sensitized solar cells. Sustain. Energy Fuels 3, 1749–1756 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, G. et al. Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Green Synthesis of Gold Nanoparticles Using Carrageenan Oligosaccharide and Their In Vitro Antitumor Activity. Mar. Drugs 16, 277 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gün Gök, Z., Karayel, M. & Yiğitoğlu, M. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed. 47, 1843–1864 (2021).

    Article 

    Google Scholar
     

  • Miccoli, I., Edler, F., Pfnür, H. & Tegenkamp, C. The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 27, 223201 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, S. J., Hwang, H. J. & Kim, H. S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology 25, 265601 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Amert, A. K., Oh, D. H. & Kim, N. S. A simulation and experimental study on packing of nanoinks to attain better conductivity. in Journal of Applied Physics 108 102806 (American Institute of PhysicsAIP, 2010).

  • Woo, K., Kim, D., Kim, J. S., Lim, S. & Moon, J. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25, 429–433 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bakonyi, I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Eur. Phys. J. 136, 410 (2021).

    CAS 

    Google Scholar
     

  • Kittel, C. Introduction to Solid State Physics Charles Kittel. 8 (2005).

  • Hill, R. M. Electrical conduction in ultra thin metal films I. Theoretical. Proc. R. Soc. Lond. A. Math. Phys. Sci. 309, 377–395 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, P., Abeles, B. & Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 31, 44–47 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Dellinger, J. H. The temperature coefficient of resistance of copper. J. Frankl. Inst. 170, 213–216 (1910).

    Article 

    Google Scholar
     

  • Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: AppI. Phys. 11, 689 (1978).

  • Belser, R. B. & Hicklin, W. H. Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25° to 600 °C. J. Appl. Phys. 30, 313–322 (1959).

    Article 
    CAS 

    Google Scholar
     

  • Gall, D. The search for the most conductive metal for narrow interconnect lines. J. Appl. Phys. 127, 50901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, H. et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals. Prog. Nat. Sci. Mater. Int. 23, 18–22 (2013).

    Article 

    Google Scholar
     

  • Gao, Y. et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265–1272 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jacob, U., Vancea, J. & Hoffmann, H. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films. Phys. Rev. B 41, 11852 (1990).

    Article 
    CAS 

    Google Scholar
     

  • West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pereira, H. J. et al. Fabrication of Copper Window Electrodes with ≈10 8 Apertures cm −2 for Organic Photovoltaics. Adv. Funct. Mater. 28, 1802893 (2018).

    Article 

    Google Scholar
     

  • Bellchambers, P. et al. Elucidating the exceptional passivation effect of 0.8 nm evaporated aluminium on transparent copper films. Front. Mater. 5, 71 (2018).

  • Brunetti, F. et al. Printed Solar Cells and Energy Storage Devices on Paper Substrates. Adv. Funct. Mater. 29, 1806798 (2019).

    Article 

    Google Scholar
     

  • Yao, B. et al. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 4, 1700107 (2017).

    Article 

    Google Scholar
     

  • LaDou, J. Printed circuit board industry. Int. J. Hyg. Environ. Health 209, 211–219 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirvakili, S. M., Broderick, K. & Langer, R. S. A New Approach for Microfabrication of Printed Circuit Boards with Ultrafine Traces. ACS Appl. Mater. Interfaces 11, 35376–35381 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komolafe, A. et al. Integrating Flexible Filament Circuits for E-Textile Applications. Adv. Mater. Technol. 4, 1900176 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. J. et al. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Sci. Rep. 5, 1–10 (2015). 2015 51.


    Google Scholar
     

  • Wang, B. Y., Yoo, T. H., Song, Y. W., Lim, D. S. & Oh, Y. J. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Appl. Mater. Interfaces 5, 4113–4119 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleh, R., Barth, M., Eberhardt, W. & Zimmermann, A. Bending Setups for Reliability Investigation of Flexible Electronics. Micromachines 12, 1–22 (2021).

    Article 

    Google Scholar
     

  • Yang, Y., Huang, Q., Payne, G. F., Sun, R. & Wang, X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725–732 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schreck, M., Deshmukh, R., Tervoort, E. & Niederberger, M. Impregnation of Cellulose Fibers with Copper Colloids and Their Processing into Electrically Conductive Paper. Chem. Mater. 34, 43–52 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pinto, R. J. B. et al. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials. ACS Appl. Mater. Interfaces 12, 34208–34216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Vos, M., Torah, R., Beeby, S. & Tudor, J. Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Eng. 87, 1513–1516 (2014).

    Article 

    Google Scholar
     

  • De Vos, M., Torah, R. & Tudor, J. Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Mater. Struct. 25, 045016 (2016).

    Article 

    Google Scholar
     

  • Daerr, A. & Mogne, A. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop. J. Open Res. Softw. 4, 3 (2016).

    Article 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Un duel “Next Gen” au premier tour du FIP Silver de Narbonne !

    Precious Metal

    Ero Copper rétrogradée à « performance sectorielle » par la Banque Nationale du Canada

    Precious Metal

    forages sur le site de Boumadine

    Precious Metal

    Investors are searching for the next gold. Don’t get burned.

    Precious Metal

    Mithril Silver and Gold annonce un placement privé de 10 millions de dollars canadiens au prix de 0,36 $CA par action

    Precious Metal

    Endeavour Silver chute de 8% alors que la production d’argent équivalent grimpe de 17% au deuxième trimestre

    Precious Metal
    Leave A Reply Cancel Reply

    Top Picks
    Cryptocurrency

    Russia to Begin Crypto Trials to Ease Sanction-Induced Payment Woes

    Property

    Property tax update: You can now complete the new online application for ANCHOR, Senior Freeze, Stay NJ

    Cryptocurrency

    Donald Trump Unveils New NFT Collection Featuring Debate Memorabilia And Exclusive Perks

    Editors Picks

    Friendly fraud: The crypto world’s hidden enemy

    July 29, 2024

    Building castles in the air or laying solid foundations? The role of advice in property dreams – The Mail & Guardian

    May 20, 2025

    Blight woes mount in San Jose while city delays action on problems

    August 10, 2024

    Starting in April, utilities can cut off power to Mainers with unpaid bills

    March 25, 2025
    What's Hot

    Revaluations to be conducted every 5 years

    June 12, 2025

    Call to end nuclear power ban brings heated reaction in Australia

    August 12, 2024

    As wildfires intensify, utilities want liability protections

    April 25, 2025
    Our Picks

    Future FinTech Group Inc – Rétablit sa conformité avec le cours plancher du Nasdaq – Dépôt auprès de la SEC

    April 29, 2025

    Ce nouveau métal super solide pourrait révolutionner l’aérospatiale, l’armement et bien plus encore

    February 18, 2025

    Oil Prices Plunge After Israel’s Strike on Iran Avoids Energy Facilities

    October 28, 2024
    Weekly Top

    Credas launches digital wallet, payments as property sector adapts to UK changes

    July 9, 2025

    Pakistan Prepares Digital Currency Pilot, Central Bank Confirms

    July 9, 2025

    Un duel “Next Gen” au premier tour du FIP Silver de Narbonne !

    July 9, 2025
    Editor's Pick

    Alandalus Property H2 Dividende par action SAR 0,25 -Le 23 mars 2025 à 06:14

    March 22, 2025

    Mongolia’s Fintech Future: Building a Digital Economy in a Land of Contrasts

    August 24, 2024

    Pour M&G Investments, le retour en grâce des actions européennes décotées va continuer

    February 28, 2025
    © 2025 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.