Haynes, W. M. (Ed.). CRC Handbook of Chemistry and Physics 97th Edn, (CRC Press, 2016).
Buga, C. S. & Viana, J. C. The role of printed electronics and related technologies in the development of smart connected products. Flex. Print. Electron. 7, 043001 (2022).
Wiklund, J. et al. A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 5, 89 (2021).
Zeng, X. et al. Copper inks for printed electronics: a review. Nanoscale 14, 16003–16032 (2022).
Li, W. et al. The rise of conductive copper inks: challenges and perspectives. Appl. Mater. Today 18, 100451 (2020).
Jung, J. et al. Moiré-Free Imperceptible and Flexible Random Metal Grid Electrodes with Large Figure-of-Merit by Photonic Sintering Control of Copper Nanoparticles. ACS Appl. Mater. Interfaces 11, 15773–15780 (2019).
Jang, Y. R. et al. A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics. Int. J. Precis. Eng. Manuf. – Green. Technol. 8, 327–363 (2021).
Cano-Raya, C., Denchev, Z. Z., Cruz, S. F. & Viana, J. C. Chemistry of solid metal-based inks and pastes for printed electronics – A review. Appl. Mater. Today 15, 416–430 (2019).
Woo, K., Kim, Y., Lee, B., Kim, J. & Moon, J. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. ACS Appl. Mater. Interfaces 3, 2377–2382 (2011).
Jeong, S. et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 18, 679–686 (2008).
Stewart, I. E., Ye, S., Chen, Z., Flowers, P. F. & Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-Shell Nanowires and Their Use in Transparent Conducting Films. Chem. Mater. 27, 7788–7794 (2015).
Kim, T. G. et al. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes. ACS Appl. Mater. Interfaces 10, 1059–1066 (2018).
Jeong, G. et al. A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. J. Mater. Chem. A 6, 24805–24813 (2018).
Chen, Z., Ye, S., Stewart, I. E. & Wiley, B. J. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. ACS Nano 8, 9673–9679 (2014).
Cure, J. et al. Remarkable Decrease in the Oxidation Rate of Cu Nanocrystals Controlled by Alkylamine. Ligands J. Phys. Chem. C. 121, 5253–5260 (2017).
Tokura, R., Tsukamoto, H., Tokunaga, T., Nguyen, M. T. & Yonezawa, T. The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering. Mater. Adv. 3, 4802–4812 (2022).
Dabera, G. et al. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat. Commun. 8, 1894 (2017).
Pereira, H. J., Killalea, C. E., & Amabilino, D. B. Low-Temperature Sintering of L-Alanine-Functionalized Metallic Copper Particles Affording Conductive Films with Excellent Oxidative Stability. ACS Appl. Electron. Mater. 4, 2502–2515 (2022).
Lai, H., Wen, J., Yang, G., Zhang, Y. & Cu, C. Mixed Cu Nanoparticles and Cu Microparticles with Promising Low-temperature and Low-pressure Sintering Properties and Inoxidizability for Microelectronic Packaging Applications. in 2021 22nd International Conference on Electronic Packaging Technology, ICEPT 2021 (Institute of Electrical and Electronics Engineers Inc., 2021). https://doi.org/10.1109/ICEPT52650.2021.9568089.
Seong, K. et al. An Ultradurable and Uniform Cu Electrode by Blending Carbon Nanotube Fillers in Copper-Based Metal-Organic Decomposition Ink for Flexible Printed Electronics. Adv. Mater. Interfaces 5, 1800502 (2018).
Yong, Y. et al. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions. Sci. Rep. 7, 1–9 (2017).
Kanzaki, M., Kawaguchi, Y. & Kawasaki, H. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. ACS Appl. Mater. Interfaces 9, 20852–20858 (2017).
Kim, S. J., Lee, J., Choi, Y. H., Yeon, D. H. & Byun, Y. Effect of copper concentration in printable copper inks on film fabrication. Thin Solid Films 520, 2731–2734 (2012).
Choi, Y. H. & Hong, S. H. Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu(II) Complex Ink. Langmuir 31, 8101–8110 (2015).
Dai, X., Zhang, T., Shi, H., Zhang, Y. & Wang, T. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics. ACS Omega 5, 13416–13423 (2020).
You, J. et al. Optical Detection of Copper Ions via Structural Dissociation of Plasmonic Sugar Nanoprobes. Anal. Chem. 94, 5521–5529 (2022).
Jones, F., Cölfen, H. & Antonietti, M. Interaction of κ-carrageenan with nickel, cobalt, and iron hydroxides. Biomacromolecules 1, 556–563 (2000).
Jones, F., Cölfen, H. & Antonietti, M. Iron oxyhydroxide colloids stabilized with polysaccharides. Colloid Polym. Sci. 278, 491–501 (2000).
Usov, A. I. Polysaccharides of the red algae. in Advances in Carbohydrate Chemistry and Biochemistry 65 115–217 (Academic Press Inc., 2011).
dos Santos, M. A. & Grenha, A. Polysaccharide Nanoparticles for Protein and Peptide Delivery: Exploring Less-Known Materials. in Advances in Protein Chemistry and Structural Biology 98 223–261 (Academic Press Inc., 2015).
Liew, J. W. Y., Loh, K. S., Ahmad, A., Lim, K. L. & Wan Daud, W. R. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS One 12, e0185313 (2017).
Mangione, M. R., Giacomazza, D., Bulone, D., Martorana, V. & San Biagio, P. L. Thermoreversible gelation of κ-Carrageenan: Relation between conformational transition and aggregation. Biophys. Chem. 104, 95–105 (2003).
Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C. 112, 1101–1108 (2008).
Choudhary, S. et al. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 8, 055114 (2018).
Gattinoni, C. & Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–447 (2015).
Tye, Y. Y., Abdul Khalil H. P. S., Kok, C. Y. & Saurabh, C. K. Preparation and characterization of modified and unmodified carrageenan based films. in IOP Conference Series: Materials Science and Engineering 368 012020 (Institute of Physics Publishing, 2018).
Lefez, B., Kartouni, K., Lenglet, M., Rönnow, D. & Ribbing, C. G. Application of reflectance spectrophotometry to the study of copper (I) oxides (Cu2O and Cu3O2) on metallic substrate. Surf. Interface Anal. 22, 451–455 (1994).
Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017).
Berton, S. B. R. et al. Properties of a commercial κ-carrageenan food ingredient and its durable superabsorbent hydrogels. Carbohydr. Res. 487, 107883 (2020).
Li, L. et al. FeS2/carbon hybrids on carbon cloth: A highly efficient and stable counter electrode for dye-sensitized solar cells. Sustain. Energy Fuels 3, 1749–1756 (2019).
Zhou, G. et al. Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012).
Chen, X. et al. Green Synthesis of Gold Nanoparticles Using Carrageenan Oligosaccharide and Their In Vitro Antitumor Activity. Mar. Drugs 16, 277 (2018).
Gün Gök, Z., Karayel, M. & Yiğitoğlu, M. Synthesis of carrageenan coated silver nanoparticles by an easy green method and their characterization and antimicrobial activities. Res. Chem. Intermed. 47, 1843–1864 (2021).
Miccoli, I., Edler, F., Pfnür, H. & Tegenkamp, C. The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter 27, 223201 (2015).
Joo, S. J., Hwang, H. J. & Kim, H. S. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology 25, 265601 (2014).
Amert, A. K., Oh, D. H. & Kim, N. S. A simulation and experimental study on packing of nanoinks to attain better conductivity. in Journal of Applied Physics 108 102806 (American Institute of PhysicsAIP, 2010).
Woo, K., Kim, D., Kim, J. S., Lim, S. & Moon, J. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25, 429–433 (2009).
Bakonyi, I. Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu. Eur. Phys. J. 136, 410 (2021).
Kittel, C. Introduction to Solid State Physics Charles Kittel. 8 (2005).
Hill, R. M. Electrical conduction in ultra thin metal films I. Theoretical. Proc. R. Soc. Lond. A. Math. Phys. Sci. 309, 377–395 (1969).
Sheng, P., Abeles, B. & Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 31, 44–47 (1973).
Dellinger, J. H. The temperature coefficient of resistance of copper. J. Frankl. Inst. 170, 213–216 (1910).
Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: AppI. Phys. 11, 689 (1978).
Belser, R. B. & Hicklin, W. H. Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25° to 600 °C. J. Appl. Phys. 30, 313–322 (1959).
Gall, D. The search for the most conductive metal for narrow interconnect lines. J. Appl. Phys. 127, 50901 (2020).
Zeng, H. et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals. Prog. Nat. Sci. Mater. Int. 23, 18–22 (2013).
Gao, Y. et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Mater. Des. 160, 1265–1272 (2018).
Jacob, U., Vancea, J. & Hoffmann, H. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films. Phys. Rev. B 41, 11852 (1990).
West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).
Pereira, H. J. et al. Fabrication of Copper Window Electrodes with ≈10 8 Apertures cm −2 for Organic Photovoltaics. Adv. Funct. Mater. 28, 1802893 (2018).
Bellchambers, P. et al. Elucidating the exceptional passivation effect of 0.8 nm evaporated aluminium on transparent copper films. Front. Mater. 5, 71 (2018).
Brunetti, F. et al. Printed Solar Cells and Energy Storage Devices on Paper Substrates. Adv. Funct. Mater. 29, 1806798 (2019).
Yao, B. et al. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 4, 1700107 (2017).
LaDou, J. Printed circuit board industry. Int. J. Hyg. Environ. Health 209, 211–219 (2006).
Mirvakili, S. M., Broderick, K. & Langer, R. S. A New Approach for Microfabrication of Printed Circuit Boards with Ultrafine Traces. ACS Appl. Mater. Interfaces 11, 35376–35381 (2019).
Komolafe, A. et al. Integrating Flexible Filament Circuits for E-Textile Applications. Adv. Mater. Technol. 4, 1900176 (2019).
Kim, D. J. et al. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Sci. Rep. 5, 1–10 (2015). 2015 51.
Wang, B. Y., Yoo, T. H., Song, Y. W., Lim, D. S. & Oh, Y. J. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Appl. Mater. Interfaces 5, 4113–4119 (2013).
Saleh, R., Barth, M., Eberhardt, W. & Zimmermann, A. Bending Setups for Reliability Investigation of Flexible Electronics. Micromachines 12, 1–22 (2021).
Yang, Y., Huang, Q., Payne, G. F., Sun, R. & Wang, X. A highly conductive, pliable and foldable Cu/cellulose paper electrode enabled by controlled deposition of copper nanoparticles. Nanoscale 11, 725–732 (2019).
Schreck, M., Deshmukh, R., Tervoort, E. & Niederberger, M. Impregnation of Cellulose Fibers with Copper Colloids and Their Processing into Electrically Conductive Paper. Chem. Mater. 34, 43–52 (2022).
Pinto, R. J. B. et al. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials. ACS Appl. Mater. Interfaces 12, 34208–34216 (2020).
De Vos, M., Torah, R., Beeby, S. & Tudor, J. Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Eng. 87, 1513–1516 (2014).
De Vos, M., Torah, R. & Tudor, J. Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Mater. Struct. 25, 045016 (2016).
Daerr, A. & Mogne, A. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop. J. Open Res. Softw. 4, 3 (2016).