Researchers have found an innovative technique to maximize the use of precious metals that are vital to the green energy transition.
Scientists from the University of Nottingham explained that they used argon plasma — a type of ionized gas that is created when argon gas is exposed to high temperatures or electrical energy — to disperse the atoms in various metals to make the most of the materials. That way, it reduces the pollution generated from mining and metal sourcing, cutting production costs and benefiting the planet at the same time.
In the study, published in Advanced Science, researchers from the University of Birmingham, the University of Nottingham, Diamond Light Source, and the Engineering and Physical Sciences Research Council’s SuperSTEM facility revealed that using argon ions to create “defects” in metal atoms allows them to formulate super-thin 2D structures, which are more efficient than their 3D counterparts.
They were able to do this by taking advantage of atomic “vacancies,” which trap and anchor the metal atoms and prompt them to form single-layer clusters. The method has huge potential, as the team demonstrated its success across 21 different elements, including silver and gold.
“Every atom counts. Precious and rare metals are vital for clean energy and industrial catalysis, but their supply is limited. We’ve developed a scalable strategy to ensure not a single atom goes to waste,” Emerson Kohlrausch, lead researcher from the University of Nottingham’s School of Chemistry, said of the breakthrough.
Professor Andrei Khlobystov, another study author, added: “This is a one-size-fits-all solution. We can create mono-, bi-, or even tri-metallic atomic layers, with each atom precisely where we want it. That level of control is unprecedented.”
Sadegh Ghaderzadeh, who led the theoretical modeling, noted that the beauty of the technique is in its simplicity. By simply moving atoms around, it changes the structure of the metals and makes them more conducive to sustainable applications. Ghaderzadeh added that they will be able to recreate the materials in computer models moving forward, which will significantly increase the ability to scale up production.
As for how the technique can be used in the real world, scientists have several uses in mind, including improved hydrogen production, energy storage, ammonia synthesis, and carbon dioxide conversion. So far, the team has demonstrated ”stability in air for over 16 months,” meaning the materials remained unchanged post-production.
Looking ahead, the research offers a promising path to a more efficient, greener future wherein technology and healthy humans can coexist. It will also be exciting to witness the next chapter of industrial revolution, as scientific discoveries can allow us to finally move past our need for fossil fuels.
Join our free newsletter for weekly updates on the latest innovations improving our lives and shaping our future, and don’t miss this cool list of easy ways to help yourself while helping the planet.