Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»Microstrain screening towards defect-less layered transition metal oxide cathodes
    Commodities

    Microstrain screening towards defect-less layered transition metal oxide cathodes

    August 20, 20248 Mins Read


  • Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chattot, R. et al. Beyond strain and ligand effects: microstrain-induced enhancement of the oxygen reduction reaction kinetics on various PtNi/C nanostructures. ACS Catal. 7, 398–408 (2016).

    Article 

    Google Scholar
     

  • Xu, G. L. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ. Sci. 10, 1677–1693 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, E. J. et al. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 14, 4873–4880 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and strategies to advance high‐energy nickel‐rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Isotropic microstrain relaxation in Ni-rich cathodes for long cycling lithium ion batteries. ACS Nano 17, 17095–17104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. H. et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 12, 6552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. Revisiting primary particles in layered lithium transition metal oxides and their impact on structural degradation. Adv. Sci. 6, 1800843 (2019).

    Article 

    Google Scholar
     

  • Ahmed, S. et al. Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter 4, 3953–3966 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements. Adv. Mater. 32, e2003417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. & Bai, J. Synthesis and processing by design of high‐nickel cathode materials. Batter. Supercaps 5, e202100174 (2021).

    Article 

    Google Scholar
     

  • Ma, T. et al. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 341, 114–121 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hua, Y. et al. Unraveling the correlation between the synthesis time and electrochemical performance of transition metal layered oxides by in situ neutron powder diffraction. ACS Appl. Energy Mater. 6, 6563–6571 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017).

    Article 

    Google Scholar
     

  • Zhao, J. et al. In situ probing and synthetic control of cationic ordering in Ni‐rich layered oxide cathodes. Adv. Energy Mater. 7, 1601266 (2016).

    Article 

    Google Scholar
     

  • Song, S. H. et al. Toward a nanoscale‐defect‐free Ni‐rich layered oxide cathode through regulated pore evolution for long‐lifespan Li rechargeable batteries. Adv. Funct. Mater. 34, 2306654 (2023).

    Article 

    Google Scholar
     

  • Zhang, M. J. et al. Cooling induced surface reconstruction during synthesis of high‐Ni layered oxides. Adv. Energy Mater. 9, 1901915 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, W. & Yang, Y. Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3, 709–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gim, J. et al. Probing solid-state reaction through microstrain: a case study on synthesis of LiCoO2. J. Power Sources 469, 228422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, J. H. et al. Real-time observation of phase transition from layered to spinel phase under electron beam irradiation. J. Anal. Sci. Technol. 14, 31 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, J. et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. H. et al. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceram. Int. 48, 19675–19680 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Riesgo-González, V. et al. Effect of annealing on the structure, composition, and electrochemistry of NMC811 coated with Al2O3 using an alkoxide precursor. Chem. Mater. 34, 9722–9735 (2022).

    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W. K. TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • van Berkum, J. G. M., Delhez, R., de Keijser, T. H. & Mittemeijer, E. J. Diffraction-line broadening due to strain fields in materials; fundamental aspects and methods of analysis. Acta Crystallogr. A 52, 730–747 (1996).

    Article 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    VAALCO mise sur Baobab, malgré sa production marginale

    Commodities

    Haiti – Agriculture : Colombia and Haiti progress in their agricultural cooperation

    Commodities

    le premier parc éolien en Nord-Vienne inauguré

    Commodities

    China’s market regulator promotes agricultural standardization in Zambia to deepen Sino-African ties

    Commodities

    Mineral Commodities reçoit un paiement partiel dans le cadre de la vente de son projet en Norvège

    Commodities

    The Commodities Feed: Trump’s larger-than-expected copper tariff shocks market | articles

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Precious Metal

    Impact Silver Appoints Janet Meiklejohn as Director

    Commodities

    Farmers are making less money this year as ag economy normalizes

    Precious Metal

    Inflation Jitters Drive Gold Prices Upward

    Editors Picks

    Indian Grandmaster Vidit Gujarathi Earns Silver at European Chess Club Cup

    October 27, 2024

    Charter Hall Retail REIT augmente sa participation dans Hotel Property Investments à près de 77%. -Le 03 février 2025 à 01:02

    February 2, 2025

    USWNT Soccer Player Says She Already Broke Her Olympic Gold Medal

    August 24, 2024

    These 5 high dividend yield stocks just gave their investors another raise – Stock Insights News

    February 21, 2025
    What's Hot

    L’augmentation de capital de Peach Property obtient l’aval des actionnaires

    May 25, 2025

    Officers visit junk-filled Sun Valley property — once probed by the feds — after owner misses court

    August 22, 2024

    Hong Kong’s Clean Energy Future Will Be Mostly Nuclear, CLP Says

    August 6, 2024
    Our Picks

    Economist: Inflation rate rises to 3%, could be bullish for commodities

    February 19, 2025

    Carlyle s’associe à Citi pour investir dans des créanciers fintech

    June 12, 2025

    Reviewing ACV Auctions (NASDAQ:ACVA) & Future FinTech Group (NASDAQ:FTFT)

    August 11, 2024
    Weekly Top

    Credas launches digital wallet, payments as property sector adapts to UK changes

    July 9, 2025

    Un duel “Next Gen” au premier tour du FIP Silver de Narbonne !

    July 9, 2025

    VAALCO mise sur Baobab, malgré sa production marginale

    July 9, 2025
    Editor's Pick

    Erie County gives Buffalo Bills fans chance to invest in stadium through ‘Bills bonds’

    August 26, 2024

    Gold rates set for steepest weekly drop in six months: Key factors at play

    May 15, 2025

    CBI busts international cyber fraud racket; ₹2.8 crore in cryptocurrency seized, one arrested

    June 11, 2025
    © 2025 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.