Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»Microstrain screening towards defect-less layered transition metal oxide cathodes
    Commodities

    Microstrain screening towards defect-less layered transition metal oxide cathodes

    August 20, 20248 Mins Read


  • Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chattot, R. et al. Beyond strain and ligand effects: microstrain-induced enhancement of the oxygen reduction reaction kinetics on various PtNi/C nanostructures. ACS Catal. 7, 398–408 (2016).

    Article 

    Google Scholar
     

  • Xu, G. L. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ. Sci. 10, 1677–1693 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, E. J. et al. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 14, 4873–4880 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and strategies to advance high‐energy nickel‐rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Isotropic microstrain relaxation in Ni-rich cathodes for long cycling lithium ion batteries. ACS Nano 17, 17095–17104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. H. et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 12, 6552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. Revisiting primary particles in layered lithium transition metal oxides and their impact on structural degradation. Adv. Sci. 6, 1800843 (2019).

    Article 

    Google Scholar
     

  • Ahmed, S. et al. Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter 4, 3953–3966 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements. Adv. Mater. 32, e2003417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. & Bai, J. Synthesis and processing by design of high‐nickel cathode materials. Batter. Supercaps 5, e202100174 (2021).

    Article 

    Google Scholar
     

  • Ma, T. et al. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 341, 114–121 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hua, Y. et al. Unraveling the correlation between the synthesis time and electrochemical performance of transition metal layered oxides by in situ neutron powder diffraction. ACS Appl. Energy Mater. 6, 6563–6571 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017).

    Article 

    Google Scholar
     

  • Zhao, J. et al. In situ probing and synthetic control of cationic ordering in Ni‐rich layered oxide cathodes. Adv. Energy Mater. 7, 1601266 (2016).

    Article 

    Google Scholar
     

  • Song, S. H. et al. Toward a nanoscale‐defect‐free Ni‐rich layered oxide cathode through regulated pore evolution for long‐lifespan Li rechargeable batteries. Adv. Funct. Mater. 34, 2306654 (2023).

    Article 

    Google Scholar
     

  • Zhang, M. J. et al. Cooling induced surface reconstruction during synthesis of high‐Ni layered oxides. Adv. Energy Mater. 9, 1901915 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, W. & Yang, Y. Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3, 709–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gim, J. et al. Probing solid-state reaction through microstrain: a case study on synthesis of LiCoO2. J. Power Sources 469, 228422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, J. H. et al. Real-time observation of phase transition from layered to spinel phase under electron beam irradiation. J. Anal. Sci. Technol. 14, 31 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, J. et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. H. et al. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceram. Int. 48, 19675–19680 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Riesgo-González, V. et al. Effect of annealing on the structure, composition, and electrochemistry of NMC811 coated with Al2O3 using an alkoxide precursor. Chem. Mater. 34, 9722–9735 (2022).

    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W. K. TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • van Berkum, J. G. M., Delhez, R., de Keijser, T. H. & Mittemeijer, E. J. Diffraction-line broadening due to strain fields in materials; fundamental aspects and methods of analysis. Acta Crystallogr. A 52, 730–747 (1996).

    Article 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Africa Energy Forum 2025 : le Cameroun recherche des financements pour son plan énergétique évalué à 7200 milliards FCFA

    Commodities

    AECT Grad Students, Faculty Earn Presentation Awards at Agricultural Education Conference

    Commodities

    Citrus and potatoes top Egypt’s H1 agricultural exports of 5.2mln tonnes

    Commodities

    400 millions $ au Nigeria pour la « plus grande usine de terres rares » d’Afrique, mais…

    Commodities

    Oil hits five-month high after US hits key Iranian nuclear sites

    Commodities

    Le Nigeria bénéficiera d’un appui allemand de 20 millions € pour sa transition énergétique

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Commodities

    BW Energy s’apprête à relancer sa plateforme de production au large des côtes

    Commodities

    Equinor : met en service sa 1ère centrale solaire au Danemark

    Cryptocurrency

    Six accused of illegal £6m cryptocurrency operation in Glasgow

    Editors Picks

    Milwaukee Metal Festival announce five new bands

    October 27, 2024

    China, US locked in lose-lose tech battle whoever wins White House, experts say

    October 9, 2024

    Buying a house in a ‘new town’ is up to £50,000 cheaper, says Halifax

    October 17, 2024

    Section 40A(3) applies to revenue expenditure, not to capital investments: Delhi HC

    March 26, 2025
    What's Hot

    Scottish house price growth outstrips rest of UK

    October 23, 2024

    L’or atteint un nouveau record après les menaces douanières de Trump

    March 13, 2025

    Cornell Professor Warns Against Crypto’s Growing Mainstream Popularity

    August 10, 2024
    Our Picks

    3 Coins Under $0.55 That May Give Major Returns

    October 22, 2024

    Metal Replacement Market to Reach 408.32 Billion By 2032

    October 29, 2024

    Bentonville becomes America’s next real estate hot spot

    October 14, 2024
    Weekly Top

    ION de Pignataro envisage d’investir dans une fintech soutenue par Azimut

    June 23, 2025

    Krona Public Real Estate acquiert quatre propriétés et lance une émission d’actions avec droits préférentiels

    June 23, 2025

    AECT Grad Students, Faculty Earn Presentation Awards at Agricultural Education Conference

    June 22, 2025
    Editor's Pick

    Visa lanza “Commercial Integrated Partners” para impulsar el ecosistema fintech

    May 21, 2025

    Bitcoin Price Briefly Crashes Below $50K, Crypto Liquidations Hit $1B

    August 5, 2024

    Cours Certificat TURBO BULL OPEN END – SILVER

    March 25, 2025
    © 2025 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.