Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»Microstrain screening towards defect-less layered transition metal oxide cathodes
    Commodities

    Microstrain screening towards defect-less layered transition metal oxide cathodes

    August 20, 20248 Mins Read


  • Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chattot, R. et al. Beyond strain and ligand effects: microstrain-induced enhancement of the oxygen reduction reaction kinetics on various PtNi/C nanostructures. ACS Catal. 7, 398–408 (2016).

    Article 

    Google Scholar
     

  • Xu, G. L. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ. Sci. 10, 1677–1693 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, E. J. et al. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 14, 4873–4880 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat. Commun. 9, 2437 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. L. et al. Challenges and strategies to advance high‐energy nickel‐rich layered lithium transition metal oxide cathodes for harsh operation. Adv. Funct. Mater. 30, 2004748 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Isotropic microstrain relaxation in Ni-rich cathodes for long cycling lithium ion batteries. ACS Nano 17, 17095–17104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. H. et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat. Commun. 12, 6552 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. Y. et al. Revisiting primary particles in layered lithium transition metal oxides and their impact on structural degradation. Adv. Sci. 6, 1800843 (2019).

    Article 

    Google Scholar
     

  • Ahmed, S. et al. Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter 4, 3953–3966 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements. Adv. Mater. 32, e2003417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. & Bai, J. Synthesis and processing by design of high‐nickel cathode materials. Batter. Supercaps 5, e202100174 (2021).

    Article 

    Google Scholar
     

  • Ma, T. et al. Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 341, 114–121 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hua, Y. et al. Unraveling the correlation between the synthesis time and electrochemical performance of transition metal layered oxides by in situ neutron powder diffraction. ACS Appl. Energy Mater. 6, 6563–6571 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater. 29, 1606715 (2017).

    Article 

    Google Scholar
     

  • Zhao, J. et al. In situ probing and synthetic control of cationic ordering in Ni‐rich layered oxide cathodes. Adv. Energy Mater. 7, 1601266 (2016).

    Article 

    Google Scholar
     

  • Song, S. H. et al. Toward a nanoscale‐defect‐free Ni‐rich layered oxide cathode through regulated pore evolution for long‐lifespan Li rechargeable batteries. Adv. Funct. Mater. 34, 2306654 (2023).

    Article 

    Google Scholar
     

  • Zhang, M. J. et al. Cooling induced surface reconstruction during synthesis of high‐Ni layered oxides. Adv. Energy Mater. 9, 1901915 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, W. & Yang, Y. Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3, 709–720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gim, J. et al. Probing solid-state reaction through microstrain: a case study on synthesis of LiCoO2. J. Power Sources 469, 228422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. et al. In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nat. Chem. 14, 614–622 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, J. H. et al. Real-time observation of phase transition from layered to spinel phase under electron beam irradiation. J. Anal. Sci. Technol. 14, 31 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bai, J. et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater. 32, 9906–9913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. H. et al. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceram. Int. 48, 19675–19680 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Riesgo-González, V. et al. Effect of annealing on the structure, composition, and electrochemistry of NMC811 coated with Al2O3 using an alkoxide precursor. Chem. Mater. 34, 9722–9735 (2022).

    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Radin, M. D. et al. Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017).

    Article 

    Google Scholar
     

  • Xiao, X., Xu, Z., Lin, F. & Lee, W. K. TXM-Sandbox: an open-source software for transmission X-ray microscopy data analysis. J. Synchrotron Radiat. 29, 266–275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nat. Commun. 12, 4235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • van Berkum, J. G. M., Delhez, R., de Keijser, T. H. & Mittemeijer, E. J. Diffraction-line broadening due to strain fields in materials; fundamental aspects and methods of analysis. Acta Crystallogr. A 52, 730–747 (1996).

    Article 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    7 sun-powered innovations leading the next-gen energy shift

    Commodities

    Millions of households could get £255 energy bill refund by checking two-month rule

    Commodities

    Agricultural manufacturer set for comeback as new owners step in

    Commodities

    Martin Lewis issues energy bill warning to UK

    Commodities

    UK Energy Debt Hits Record £5.5 Billion: Why Your Bills Won’t Fall This Winter

    Commodities

    Six Global Energy Trends Shaping the Middle East in 2026

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Property

    Fortitudo property developer enters administration

    Investments

    Prudently managing post-retirement portfolio need of the hour

    Stock Market

    Türkiye advances autonomous drone technology for maritime use

    Editors Picks

    Timberwolves partner with fintech firm Sezzle

    August 14, 2024

    Gold shines bright as biggest jewelry market boosts options bets

    March 9, 2025

    Korean firms rush to sell bonds with yields at over 2-yr low

    August 8, 2024

    SparkMeter Signs Two New Contracts in Somalia to Modernize African Utilities

    August 20, 2024
    What's Hot

    Reviewing ACV Auctions (NASDAQ:ACVA) & Future FinTech Group (NASDAQ:FTFT)

    August 11, 2024

    2 Supercharged Dividend Stocks to Buy if There’s a Stock Market Sell-Off

    August 18, 2024

    UK Passes Digital Assets Bill Recognizing Crypto as Property

    December 3, 2025
    Our Picks

    Former Dallas Cowboys WR Tavon Austin announces retirement from NFL

    August 13, 2024

    How To Buy Pi Coin (Pi Network Cryptocurrency): A Quick Guide

    February 12, 2025

    Boardwalk Real Estate Investment Trust : RBC Capital Markets toujours positif -Le 24 février 2025 à 17:01

    February 24, 2025
    Weekly Top

    Agricultural manufacturer set for comeback as new owners step in

    January 9, 2026

    UK property market shows signs of recovery

    January 9, 2026

    What Is Step-Up SIP? This Simple Trick Can Double Your Retirement Savings | Savings and Investments News

    January 9, 2026
    Editor's Pick

    Yum ! Brands Announces Leadership Transition Plans David Gibbs To Retirement In 2026 (en anglais)

    March 31, 2025

    Tijara & Real Estate Investment annonce un bénéfice de 534 161 dinars pour le premier trimestre

    May 5, 2025

    GSMP supports road bond

    October 27, 2024
    © 2026 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.