Abinaya, M. et al. Reduction of hexavalent chromium and degradation of tetracycline using a novel indium-doped Mn2O3 nanorod photocatalyst. J. Hazard. Mater. 397, 122885. https://doi.org/10.1016/j.jhazmat.2020.122885 (2020).
Zhang, T., Zhang, S., Wu, C., Zuo, H. & Yan, Q. Novel La3+/Sm3+ co-doped Bi5O7I with efficient visible-light photocatalytic activity for advanced treatment of wastewater: Internal mechanism, TC degradation pathway, and toxicity analysis. Chemosphere 313, 137540. https://doi.org/10.1016/j.chemosphere.2022.137540 (2023).
UNESCO. The UN World Water Development Report: Water for People, Water for Life. (2003).
Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619–641 (2014).
Watkinson, A. J., Murby, E. J., Kolpin, D. W. & Costanzo, S. D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 407, 2711–2723. https://doi.org/10.1016/j.scitotenv.2008.11.059 (2009).
Kümmerer, K. Antibiotics in the aquatic environment—A review–Part I. Chemosphere 75, 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086 (2009).
Minale, M. et al. Application of graphene-based materials for removal of tetracyclines using adsorption and photocatalytic-degradation: A review. J. Environ. Manage. 276, 111310. https://doi.org/10.1016/j.jenvman.2020.111310 (2020).
He, Y. et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi(2)WO(6) nanosheet under direct sunlight. Chemosphere 284, 131386. https://doi.org/10.1016/j.chemosphere.2021.131386 (2021).
Asgharian, M., Mehdipourghazi, M., Khoshandam, B. & Keramati, N. Experimental design and RSM modeling of tetracycline photocatalytic degradation using rGO/ZnO/Cu. Desalin. Water Treat. 195, 177–185. https://doi.org/10.5004/dwt.2020.25878 (2020).
Padmanabhan, P. et al. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80, 1252–1255 (2006).
Gaya, U. I. & Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9, 1–12 (2008).
Oller, I., Malato, S. & Sánchez-Pérez, J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci. Total Environ. 409, 4141–4166 (2011).
Chen, M. et al. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater. Biores. Technol. 293, 122022. https://doi.org/10.1016/j.biortech.2019.122022 (2019).
Xiang, H., Min, X., Tang, C. J., Sillanpää, M. & Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 49, 103023. https://doi.org/10.1016/j.jwpe.2022.103023 (2022).
Mohammadi, M., Sabbaghi, S., Binazadeh, M., Ghaedi, S. & Rajabi, H. Type-1 α-Fe2O3/TiO2 photocatalytic degradation of tetracycline from wastewater using CCD-based RSM optimization. Chemosphere 336, 139311. https://doi.org/10.1016/j.chemosphere.2023.139311 (2023).
Liu, X. et al. Synthesis of the porous zno nanosheets and tio2/zno/fto composite films by a low-temperature hydrothermal method and their applications in photocatalysis and electrochromism. Coatings 12, 695 (2022).
Wei, Y., Wu, Q., Meng, H., Zhang, Y. & Cao, C. Recent advances in photocatalytic self-cleaning performances of TiO 2-based building materials. RSC Adv. 13, 20584–20597 (2023).
Yuan, L., Han, C., Yang, M. Q. & Xu, Y. J. Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int. Rev. Phys. Chem. 35, 1–36. https://doi.org/10.1080/0144235X.2015.1127027 (2016).
Rasouli, J., Binazadeh, M. & Sabbaghi, S. Synthesis of a novel biomass waste-based photocatalyst for degradation of high concentration organic pollutants under visible light: Optimization of synthesis condition and operational parameters via RSM-CCD. Surf. Interf. 49, 104400. https://doi.org/10.1016/j.surfin.2024.104400 (2024).
Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706. https://doi.org/10.1038/378703a0 (1995).
Rasheed, T. J. C. Water stable MOFs as emerging class of porous materials for potential environmental applications. Chemosphere 313, 137607 (2023).
Xiao, J. D. & Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Accounts Chem. Res. 52, 356–366. https://doi.org/10.1021/acs.accounts.8b00521 (2019).
Du, C. et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 272, 129501. https://doi.org/10.1016/j.chemosphere.2020.129501 (2021).
Kitchamsetti, N., Narsimulu, D., Chinthakuntla, A., Chakra, C. S. & de Barros, A. L. Bimetallic MOF derived ZnCo2O4 nanocages as a novel class of high performance photocatalyst for the removal of organic pollutants. Inorgan. Chem. Commun. 144, 109946 (2022).
Ren, W., Wang, Y., Wang, J. & Sun, R. J. Hydrothermally synthesized Mo/Zr MOF photocatalyst for promoting the removal of Cr6+. Green Mater. 40, 1–8 (2023).
Głowniak, S., Szczęśniak, B., Choma, J. & Jaroniec, M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 28 (2023).
Wang, W. et al. Metal–organic framework composites from a mechanochemical process. Mol. Syst. Des. Eng. 8, 560–579 (2023).
Kuo, T. R. et al. Tailoring morphology of pure terephthalic acid induced beta nickel hydroxide using ultrasonication and alkalization for efficient energy storage. J. Energy Storage 56, 106117 (2022).
Peng, B. et al. CeO2−x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 10, 1939–1945. https://doi.org/10.1039/C7NR08858B (2018).
Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603 (2016).
Wei, X. et al. Ce-MOF nanosphere as colorimetric sensor with high oxidase mimicking activity for sensitive detection of H2O2. J. Inorgan. Organometal. Polym. Mater. 32, 3595–3600. https://doi.org/10.1007/s10904-022-02422-w (2022).
Wu, X. P., Gagliardi, L. & Truhlar, D. G. Cerium metal-organic framework for photocatalysis. J. Am. Chem. Soc. 140, 7904–7912. https://doi.org/10.1021/jacs.8b03613 (2018).
Sharmoukh, W. & Abdelhamid, H. N. Fenton-like Cerium metal-organic frameworks (Ce-MOFs) for catalytic oxidation of olefins, alcohol, and dyes degradation. J. Cluster Sci. 34, 2509–2519. https://doi.org/10.1007/s10876-022-02402-7 (2023).
Sirati, M. M. et al. Single-step hydrothermal synthesis of amine functionalized Ce-MOF for electrochemical water splitting. J. Taibah Univ. Sci. 16, 525–534. https://doi.org/10.1080/16583655.2022.2079310 (2022).
Smolders, S. et al. Unravelling the redox-catalytic behavior of Ce4+ metal-organic frameworks by X-ray absorption spectroscopy. ChemPhysChem 19, 373–378. https://doi.org/10.1002/cphc.201700967 (2018).
Cheng, Y., Xiao, X., Guo, X., Yao, H. & Pang, H. Synthesis of “Quasi-Ce-MOF” electrocatalysts for enhanced urea oxidation reaction performance. ACS Sustain. Chem. Eng. 8, 8675–8680. https://doi.org/10.1021/acssuschemeng.0c01800 (2020).
Dong, P., Zhu, L., Huang, J., Ren, J. & Lei, J. Electrocatalysis of cerium metal-organic frameworks for ratiometric electrochemical detection of telomerase activity. Biosens. Bioelectron. 138, 111313. https://doi.org/10.1016/j.bios.2019.05.018 (2019).
Xiong, Y. et al. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. 51, 4635–4638. https://doi.org/10.1039/C4CC10346G (2015).
Luo, L. et al. Mixed-valence Ce-BPyDC metal-organic framework with dual enzyme-like activities for colorimetric biosensing. Inorgan. Chem. 58, 11382–11388. https://doi.org/10.1021/acs.inorgchem.9b00661 (2019).
Anadebe, V. C., Chukwuike, V. I., Ramanathan, S. & Barik, R. C. Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2– saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction. Process Saf. Environ. Protect. 168, 499–512. https://doi.org/10.1016/j.psep.2022.10.016 (2022).
Ethiraj, J. et al. Solvent-driven gate opening in MOF-76-Ce: Effect on CO2 adsorption. ChemSusChem 9, 713–719. https://doi.org/10.1002/cssc.201501574 (2016).
Lin, Z. et al. Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide–organic frameworks. J. Mater. Chem. 22, 7813–7818. https://doi.org/10.1039/C2JM16324A (2012).
Su, Y., Yang, W., Sun, W., Li, Q. & Shang, J. K. Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water. Chem. Eng. J. 268, 270–279. https://doi.org/10.1016/j.cej.2015.01.070 (2015).
Zhang, L. et al. Facile Synthesis of Ce-MOF for the Removal of Phosphate, Fluoride, and Arsenic. Nanomaterials 13 (2023).
Wu, X.-P., Gagliardi, L. & Truhlar, D. G. Metal doping in cerium metal-organic frameworks for visible-response water splitting photocatalysts. J. Chem. Phys. 150, 041701. https://doi.org/10.1063/1.5043538 (2018).
Yuan, J., Wang, B. Y., Zong, Y. C. & Zhang, F. Q. Ce-MOF modified Ceria-based photocatalyst for enhancing the photocatalytic performance. Inorgan. Chem. Commun. 153, 110799. https://doi.org/10.1016/j.inoche.2023.110799 (2023).
Mi, X. & Li, X. Construction of a stable porous composite with tunable graphene oxide in Ce-based-MOFs for enhanced solar-photocatalytic degradation of sulfamethoxazole in water. Separat. Purif. Technol. 301, 122006. https://doi.org/10.1016/j.seppur.2022.122006 (2022).
Azqandi, M., Ramavandi, B., Nasseh, N., Zaarei, D. & Fanaei, F. Green synthesis of manganese ferrite magnetic nanoparticle and its modification with metallic-organic frameworks for the tetracycline adsorption from aqueous solutions: A mathematical study of kinetics, isotherms, and thermodynamics. Environ. Res. 256, 118957. https://doi.org/10.1016/j.envres.2024.118957 (2024).
Azqandi, M., Shahryari, T., Fanaei, F. & Nasseh, N. Green construction of magnetic MnFe2O4/ZIF-8 nanocomposite utilizing extract of Melissa officinalis plant for the photo-degradation of tetracycline under UV illumination. Catal. Commun. 185, 106798. https://doi.org/10.1016/j.catcom.2023.106798 (2023).
Esfandiaribayat, M. et al. Tetracycline removal from wastewater via g-C3N4 loaded RSM-CCD-optimised hybrid photocatalytic membrane reactor. Sci. Rep. 14, 1163. https://doi.org/10.1038/s41598-024-51847-5 (2024).
Gescher, A. Metabolism of N, N-dimethylformamide: Key to the understanding of its toxicity. Chem. Res. Toxicol. 6, 245–251. https://doi.org/10.1021/tx00033a001 (1993).
Swaroop, S., Sughosh, P. & Ramanathan, G. Biomineralization of N,N-dimethylformamide by Paracoccus sp. strain DMF. J. Hazardous Mater. 171, 268–272, https://doi.org/10.1016/j.jhazmat.2009.05.138 (2009).
Sanjeev Kumar, S., Kumar, M. S., Siddavattam, D. & Karegoudar, T. B. Generation of continuous packed bed reactor with PVA–alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents. J. Hazardous Mater. 199–200, 58–63, https://doi.org/10.1016/j.jhazmat.2011.10.053 (2012).
Moslehi, M. H. et al. Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe2O4/SiO2/ZnO nanocomposite. Environ. Res. 242, 117747. https://doi.org/10.1016/j.envres.2023.117747 (2024).
Zheng, Y. et al. Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes. CrystEngComm 13, 1786–1788. https://doi.org/10.1039/C0CE00906G (2011).
Jeyaseelan, A., Naushad, M., Ahamad, T. & Viswanathan, N. Fabrication of amino functionalized benzene-1,4-dicarboxylic acid facilitated cerium based metal organic frameworks for efficient removal of fluoride from water environment. Environ. Sci. Water Res. Technol. 7, 384–395. https://doi.org/10.1039/D0EW00843E (2021).
Zhu, M., Fu, W. & Zou, G. Urothermal synthesis of an unprecedented pillar-layered metal–organic framework. J. Coordination Chem. 65, 4108–4114, https://doi.org/10.1080/00958972.2012.734378.
Wang, X., Liu, X. & Zhang, C. Parametric optimization and range analysis of organic rankine cycle for binary-cycle geothermal plant. Energy Convers. Manag. 80, 256–265. https://doi.org/10.1016/j.enconman.2014.01.026 (2014).
Shokrollahi, M., Rezakazemi, M. & Younas, M. Producing water from saline streams using membrane distillation: Modeling and optimization using CFD and design expert. Int. J. Energy Res. 44, 8841–8853. https://doi.org/10.1002/er.5578 (2020).
Abazari, R., Reza Mahjoub, A., Slawin, A. M. Z. & Carpenter-Warren, C. L. Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: An efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution. Ultrason. Sonochem. 42, 594–608, https://doi.org/10.1016/j.ultsonch.2017.12.032 (2018).
Gharib, M., Safarifard, V. & Morsali, A. Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitroaromatic sensing. Ultrason. Sonochem. 42, 112–118. https://doi.org/10.1016/j.ultsonch.2017.11.009 (2018).
Zhang, Q. et al. Fabrication of silicotungstic acid immobilized on Ce-based MOF and embedded in Zr-based MOF matrix for green fatty acid esterification. J. Ethnobiol. 11, 184–194. https://doi.org/10.1515/gps-2022-0021 (2022).
Yang, J. et al. Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. Inorgan. Chem. 45, 2857–2865. https://doi.org/10.1021/ic051557o (2006).
Moslehi, M. H. et al. Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: Advanced modelling and optimization with artificial neural network. Chemosphere 356, 141770. https://doi.org/10.1016/j.chemosphere.2024.141770 (2024).
Li, Z., Schulz, L., Ackley, C. & Fenske, N. Adsorption of tetracycline on kaolinite with pH-dependent surface charges. J. Colloid Interf. Sci. 351, 254–260. https://doi.org/10.1016/j.jcis.2010.07.034 (2010).
Ali, M. M., Mahdi, H. S., Parveen, A. & Azam, A. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conf. Proceed. 1953, 030044. https://doi.org/10.1063/1.5032379 (2018).
Reshchikov, M. A. et al. Acceptors in ZnO studied by photoluminescence. MRS Online Proceed. Library 957, 719. https://doi.org/10.1557/PROC-0957-K07-19 (2007).
Choudhury, B., Chetri, P. & Choudhury, A. Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4, 4663–4671. https://doi.org/10.1039/C3RA44603D (2014).
Islamoglu, T. et al. Cerium(IV) vs Zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent. Chem. Mater. 29, 2672–2675. https://doi.org/10.1021/acs.chemmater.6b04835 (2017).
Liu, L. et al. Water-stable nickel metal-organic framework nanobelts for cocatalyst-free photocatalytic water splitting to produce hydrogen. J. Am. Chem. Soc. 144, 2747–2754. https://doi.org/10.1021/jacs.1c12179 (2022).
Payra, S. & Roy, S. From trash to treasure: Probing cycloaddition and photocatalytic reduction of CO2 over cerium-based metal-organic frameworks. J. Phys. Chem. C 125, 8497–8507. https://doi.org/10.1021/acs.jpcc.1c00662 (2021).
Yang, H. et al. Efficient exciton dissociation on ceria chelated cerium-based MOF isogenous s-scheme photocatalyst for acetaldehyde purification. Small 20, 2308743. https://doi.org/10.1002/smll.202308743 (2024).
Goudarzi, M. D., Khosroshahi, N. & Safarifard, V. Exploring novel heterojunctions based on the cerium metal–organic framework family and CAU-1, as dissimilar structures, for the sake of photocatalytic activity enhancement. RSC Adv. 12, 32237–32248 (2022).
Laschuk, N. O., Easton, E. B. & Zenkina, O. V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 11, 27925–27936. https://doi.org/10.1039/D1RA03785D (2021).
Jia, Y. et al. Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B Environ. 240, 241–252. https://doi.org/10.1016/j.apcatb.2018.09.005 (2019).
Wang, H., He, W., Dong, X., Wang, H. & Dong, F. In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Sci. Bull. 63, 117–125. https://doi.org/10.1016/j.scib.2017.12.013 (2018).
Dong, G., Ho, W., Li, Y. & Zhang, L. Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B Environ. 174–175, 477–485. https://doi.org/10.1016/j.apcatb.2015.03.035 (2015).