Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»NREL Research Dives Deeper Into the Mysteries of Energy Control in Electron-Bifurcating Enzymes | News
    Commodities

    NREL Research Dives Deeper Into the Mysteries of Energy Control in Electron-Bifurcating Enzymes | News

    July 11, 20246 Mins Read


    Understanding the Catalytic Mechanism of This Unusual Class of Enzymes May Be a Precursor
    to More Efficient Catalysis in the Production of Fuels and Chemicals

    ShareShare on Threads


    Six people stand on steps outside a building.

    This team of researchers has made progress toward mapping the energy landscape of
    flavin-based electron bifurcation reactions. Standing in front of NREL’s Research
    and Innovation Laboratory are (left to right) Seth Wiley, Saad Imran, Cara Lubner,
    Gregory Vansuch, Michael Dawson, and Jonathan Humphreys. Photo by Joe DelNero, NREL

    In 2019, National Renewable Energy Laboratory (NREL) senior scientist Cara Lubner
    had just received a U.S. Department of Energy Office of Science Early Career Research Program Award. Since then, Lubner and her team have made considerable progress toward mapping the
    energy landscape of an enzymatic reaction.

    The $2.5 million research project, titled “Elucidating the Mechanistic Determinants
    of Flavin-Based Electron Bifurcation,” sought to build upon previous discoveries by
    the research team on mechanisms that flavin-based enzymes use to generate higher energy
    products during their metabolic reactions. This mechanism is known as flavin-based
    electron bifurcation (FBEB), which is a recently discovered fundamental mechanism
    of energy conservation.

    Flavin-based bifurcating enzymes are biocatalysts that have evolved to perform efficient
    metabolic reactions in harsh environments with low nutrients.
    FBEB reactions are a much more efficient form of catalysis than using microbes to
    convert biofeedstocks into fuel.

    Now Lubner and her team understand the specific mechanism of how flavin-based biocatalysts
    transform electrochemical potential into chemical bonds and achieve optimal energy
    conservation.

    “Building upon our previous research, our questions included how the properties of
    the flavin bifurcating site are tuned by the nearby electron donors and acceptors
    and how this site controls the two electrons without energy losses,” Lubner said.
    “We have now discovered the answers to these questions, which has allowed us to map
    out the complete physical and electronic landscape of flavin electron bifurcating
    sites.”

    Rendering the Landscape of the 10 Picosecond Enzymatic Reaction

    A graph with three lines.
    Representative electron paramagnetic resonance spectra of electron bifurcating enzymes
    (different colored traces) was studied under different conditions (solid line: chemically
    reduced; dashed line: with substrate; and dotted line: without substrate). The electron
    environment is altered in the enzymes as evidenced by subtle g-value changes. Image by NREL

    Electrons move incredibly fast, moving between enzyme cofactors in as little as 10
    picoseconds (a picosecond is one trillionth of a second). Lubner’s team had to develop
    ultrafast techniques in the lab to see these processes. Such techniques are akin to
    atomic-level time-lapse photography using a laser. They paired these techniques with
    electron paramagnetic resonance spectroscopy to peek into the electron’s environment.

    With the enzymatic reaction captured for human observation, the team began the process
    of defining the energy landscape of the reaction by mapping the environment and how
    the flavin controls movement of energy along the electron transfer pathways.

    Energy naturally flows “downhill” from a higher state to a lower one. In this enzymatic
    reaction there are two electron pathways, one that travels to a higher energy product
    and another to a lower energy product. The team has been exploring why the higher
    energy pathway is positioned closer to the flavin versus the lower energy pathway.
    An electron pathway with a shorter distance means less time and therefore less energy
    used for electron transfer.

    In addition to the location of the electron pathways, the enzyme exhibits independent
    control over the two electrons. Two-electron-chemistry flavins typically send two
    electrons downhill to the same place. This is not necessarily efficient but is easier
    to do. Lubner’s team discovered that this enzyme does one-electron-chemistry twice,
    on an energetically uphill and an energetically downhill path, which happens to be
    a super-efficient method of electron transfer.

    “Spatially, the arrangement of the energy flow pathways during the reaction provided
    clues on how the flavin is controlling the electrons on each pathway. The enzyme has
    found a way to adjust the energy levels of the flavin so it can form a high-energy
    intermediate. By first sending one electron on the downhill path, it generates a species
    that has enough energy to travel along the higher energy pathway,” Lubner said. “Our
    research explains the biochemical and physiological observations that there is strict
    partitioning of one electron down each pathway.”

    This fundamental knowledge sets the stage for advancing synthetic catalysts that can
    generate and control high-energy intermediates to efficiently drive challenging chemistry.

    Two people in a lab working in a clear box using attached gloves.
    Jonathan Humphreys (left) and Cara Lubner (right), researchers at NREL, work in a
    glovebox at the Research and Innovation Laboratory. Jonathan and Cara are part of
    a team working toward understanding how electron bifurcating enzymes impact metabolic
    outcomes. Photo by Joe DelNero, NREL

    Tuning the Enzyme for More Efficient Catalysis

    As a result of this research, Lubner’s team has begun to experiment with engineering
    the enzyme to modify its properties. The team recently discovered that by making an
    adjustment to the way the enzyme holds onto an internal cofactor molecule, they can
    change the energy landscape.

    Lubner said making a change to the way the protein binds to its cofactor seems to
    have disrupted the strict partitioning of energy at the flavin site, favoring energy
    transfer along just one of the pathways. The team hypothesizes that the change affects
    the coupling of the two pathways in yet unknown ways and is the subject of current
    studies. This work has been demonstrated in the lab, but now the team wants to test
    to see if this engineered enzyme can work inside the cell. 

    Using the knowledge gained through this work, energetically uphill reaction pathways
    in cells could be co-opted to produce industrially relevant compounds.

    “It’s promising that we can take some of the knowledge we’ve gained from this Early
    Career Award research to test new hypotheses about how this enzyme integrates with
    metabolic networks,” Lubner said. “Possible benefits of these metabolically engineered
    enzymes could be to drive more efficient production of ethanol and butanol or other
    chemicals used in sustainable aviation fuels.”

    Cara Lubner was also part of a group of researchers (including NREL’s Paul King and
    David Mulder) who won the prestigious Royal Society of Chemistry 2023 Faraday Horizon Prize
     for electron bifurcation research.  

    Read more about NREL’s basic energy sciences research or the work supported by the U.S. Department of Energy Office of Science.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Major energy supplier launches cheapest tariff that can give you half-price electricity for 8 HOURS every Sunday

    Commodities

    10 terrible early 00s movies with killer nu metal soundtracks

    Commodities

    The prophetic Slayer song that marked the end of one of thrash metal’s greatest songwriting partnerships

    Commodities

    Youth Forum on Agricultural Biotechnology opens at NSU

    Commodities

    Royal Agricultural University opens its doors for 180th birthday

    Commodities

    Lexington blocks solar farms on agricultural land. But fight over solar isn’t over

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Property

    Xinyuan Property Management Service (Cayman) conclut des accords de règlement de dettes

    Fintech

    Credit Unions and FinTech Innovations Must Align to Succeed

    Fintech

    PublicSquare envisage une stratégie de trésorerie en actifs numériques dans le cadre de ses initiatives FinTech

    Editors Picks

    Gap between prices of UK flats and houses ‘widest in 30 years’

    February 26, 2025

    Nigeria’s eNaira & Forex Liquidity

    July 9, 2025

    La fintech Sline rejoint sa maison-mère, Crédit Agricole

    January 17, 2025

    Sibanye’s Montana woes underscore miners’ growing reliance on Washington

    October 23, 2024
    What's Hot

    Technology Reply obtient la certification Oracle Service Expertise en intelligence artificielle pour l’Europe occidentale

    June 12, 2025

    Western Copper and Gold Corporation approuve l’élection de Pamela O’Hara au poste d’administratrice

    June 13, 2025

    UK firms are investing heavily in new tech – but will it make any difference?

    August 1, 2025
    Our Picks

    FIP Silver Rio Grande – Bergeron et Blanqué s’arrêtent aux portes de la finale

    February 15, 2025

    Dow, S&P 500, Nasdaq futures gain after weak jobs report with key inflation data on deck

    September 7, 2025

    Heiwa Real Estate REIT émet de nouvelles parts par attribution à un tiers pour financer des acquisitions d’actifs

    June 20, 2025
    Weekly Top

    Blind man told GCSE computing would be too hard earns degree

    September 13, 2025

    James St man who lost three buildings to fire blames burning of copper wire

    September 13, 2025

    I’m a mortgage broker. This is the purchase first-time home buyers MUST avoid if they want to secure a property in a market that’s about to explode

    September 13, 2025
    Editor's Pick

    les fondamentaux de l’or restent bons

    September 4, 2007

    Unmasking Tax Evasion Through Agricultural Income: An Analysis

    April 26, 2025

    Closely monitor digital currencies – Tinubu tells CBN

    September 10, 2025
    © 2025 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.