Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»Nano-enhanced storage of American cotton using metal-oxide nanoparticles for improving seed quality traits
    Commodities

    Nano-enhanced storage of American cotton using metal-oxide nanoparticles for improving seed quality traits

    October 18, 202413 Mins Read


  • Punia, H. et al. Genome-wide transcriptome profiling, characterization, and functional identification of NAC transcription factors in sorghum under salt stress. Antioxidants 10(10), 1605 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, N. et al. Synthesis and characterization of metal-based nanoparticles and their effect on seed quality parameters of American varieties of cotton. Mater. Today Proc. 69, 87–95 (2022).

    Article 

    Google Scholar
     

  • OECD/FAO. OECD-FAO Agricultural Outlook (Edition 2020). OECD Agriculture Statistics (Database) https://doi.org/10.1787/4919645f-en (2020).

    Article 

    Google Scholar
     

  • Goyal, A. & Parashar, M. Organic cotton and BCI-certified cotton fibres. In Sustainable Fibres for Fashion and Textile Manufacturing 51–74 (Woodhead Publishing, 2023).

    Chapter 

    Google Scholar
     

  • Nazeer, W., Zia, Z. U., Qadir, M., Ahmad, S. & Shahid, M. R. Sustainable cotton production in Punjab: Failure and its mitigating strategies. In Sustainable Agriculture in the Era of the OMICs Revolution 483–500 (Springer International Publishing, 2023).

    Chapter 

    Google Scholar
     

  • Ben-Gal, A., Tal, A. & Tel-Zur, N. The sustainability of arid agriculture: Trends and challenges. Ann. Arid Zone 45(3/4), 227 (2006).


    Google Scholar
     

  • Akhtar, M. N., Akhtar, M. W., Rahi, A. A. & ul Haq, T. Enhancing water use efficiency by using potassium-efficient cotton cultivars based on morphological and biochemical characteristic (2023).

  • Maity, A. et al. Climate change impacts on seed production and quality: Current knowledge, implications, and mitigation strategies. Seed Sci. Technol. 51(1), 7–38 (2023).

    Article 

    Google Scholar
     

  • Punia, H. et al. Ascorbate–glutathione oxidant scavengers, metabolome analysis and adaptation mechanisms of ion exclusion in sorghum under salt stress. Int. J. Mol. Sci. 22(24), 13249 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chinnamuthu, C. R. & Boopathi, P. M. Nanotechnology and agroecosystem. Madras Agric. J. 96, 1 (2009).


    Google Scholar
     

  • Vega-Fernández, L., Quesada-Grosso, R., Viñas, M., Irías-Mata, A., Montes de Oca-Vásquez, G., Vega-Baudrit, J. & Jiménez, V. M. Current applications and future perspectives of nanotechnology for the preservation and enhancement of grain and seed traits. In Nanomaterials for Environmental and Agricultural Sectors, 191–220 (2023).

  • Arshad, M. et al. Multi-element uptake and growth responses of rice (Oryza sativa L.) to TiO2 nanoparticles applied in different textured soils. Ecotoxicol. Environ. Saf. 215, 112149 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pokhrel, L. R. & Dubey, B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 452, 321–332 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pan, X. et al. Effective control of the tomato wilt pathogen using TiO2 nanoparticles as a green nanopesticide. Environ. Sci. Nano 10(5), 1441–1452 (2023).

    Article 

    Google Scholar
     

  • Mahajan, P., Dhoke, S. K. & Khanna, A. S. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. https://doi.org/10.1155/2011/696535 (2011).

    Article 

    Google Scholar
     

  • Dimkpa, C. O. et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol. 47(2), 1082–1090 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Anandaraj, K. & Natarajan, N. Effect of nanoparticles for seed quality enhancement in onion [Allium cepa (Linn) cv. CO (On)] 5. Int. J. Curr. Microbiol. Appl. Sci 6(11), 3714–3724 (2017).

    Article 

    Google Scholar
     

  • Shyla, K. K. & Natarajan, N. Effect of nanoparticles in volatile production during seed storage of groundnut. Int. J. Agric. Sci. 12, 1191–1198 (2016).


    Google Scholar
     

  • Singh, P., Mor, V. S., Malik, A., Punia, H. & Bhuker, A. Biochemical responses to natural and accelerated ageing on seed quality in Indian mustard (Brassica juncea). Indian J. Agric. Sci. 92(7), 882–885 (2022).

    Article 

    Google Scholar
     

  • Punia, H., Tokas, J., MalikSatpal, A. & Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 49, 343–353 (2021).

    Article 

    Google Scholar
     

  • Punia, H. et al. Deciphering reserve mobilization, antioxidant potential, and expression analysis of starch synthesis in sorghum seedlings under salt stress. Plants 10(11), 2463 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punia, H. et al. Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. South Afr. J. Bot. 140, 409–418 (2021).

    Article 

    Google Scholar
     

  • Vijayalakshmi, V., Ramamoorthy, K. & Natarajan, N. TiO2 nano particles on extending seed vigour and viability of naturally aged maize (Zea mays L.) seeds. J. Pharmacogn. Phytochem. 7(1), 2221–2224 (2018).


    Google Scholar
     

  • Puttappanavara, B. M. & Deshpande, V. K. Effect of nanoparticles on storability of KRH-4 hybrid rice seeds. Bull. Environ. Pharmacol. Life Sci. 8, 99–100 (2019).


    Google Scholar
     

  • Maeda, A. B., Wells, L. W., Sheehan, M. A. & Dever, J. K. Stories from the greenhouse—A brief on cotton seed germination. Plants 10(12), 2807 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik, A. et al. Development and optimization of label-free quantitative proteomics under different crossing periods of bottle gourd. Curr. Issues Mol. Biol. 45(2), 1349–1372 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik, A. et al. Investigating mineral accumulation and seed vigor potential in bottle gourd (Lagenaria siceraria) through crossbreeding timing. Plants 12(23), 3998 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adetunji, A. E., Adetunji, T. L., Varghese, B., Sershen, & Pammenter, N. W. Oxidative stress, ageing and methods of seed invigoration: An overview and perspectives. Agronomy 11(12), 2369 (2021).

    Article 

    Google Scholar
     

  • Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N. & Joshi, O. P. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl. Soil Ecol. 73, 87–96 (2014).

    Article 

    Google Scholar
     

  • Jassem, A. F., Rachana, S., Jyoti, Y. & Sakharam, D. A. Synthesis of silver nanoparticles from Fargesia sp. Jiuzhaigou leaf and investigating its effects on plant growth. Int. Res. J. Sci. Eng. A2, 23–26 (2018).


    Google Scholar
     

  • Thuesombat, P., Hannongbua, S., Akasit, S. & Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 104, 302–309 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dhoke, S. K., Mahajan, P., Kamble, R. & Khanna, A. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol. Dev. 3(1), e1 (2013).

    Article 

    Google Scholar
     

  • Raliya, R., Nair, R., Chavalmane, S., Wang, W. N. & Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12), 1584–1594 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Almutairi, Z. M. & Alharbi, A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 4(1), 280–285 (2015).


    Google Scholar
     

  • Raskar, S. V. & Laware, S. L. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci. 3(2), 467–473 (2014).


    Google Scholar
     

  • Lin, D. & Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Xiang, L. et al. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 22, 10452–10462 (2015).

    Article 

    Google Scholar
     

  • Hojjat, S. & Hojjat, H. Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int. J. Food Eng. 1(2), 106–110 (2015).


    Google Scholar
     

  • Sharma, P. et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167, 2225–2233 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, F. et al. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119(1), 77–88 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Dehkourdi, E. H., Chehrazi, M., Hosseini, H. & Hosseini, M. The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.). Int. J. Biosci. 4(5), 141–145 (2014).


    Google Scholar
     

  • Moghaddam, A. B., Nazari, T., Badraghi, J. & Kazemzad, M. Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int. J. Electrochem. Sci. 4, 247–257 (2009).

    Article 

    Google Scholar
     

  • Lusvardi, G., Barani, C., Giubertoni, F. & Paganelli, G. Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10, 1208 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mezni, A., Alghool, S., Sellami, B., Saber, N. B. & Altalhi, T. Titanium dioxide nanoparticles: Synthesis, characterisations and aquatic ecotoxicity effects. Chem. Ecol. 34(3), 288–299 (2018).

    Article 

    Google Scholar
     

  • Ramakrishnan, R. S. et al. Seed germination and seed vigour induction through foliar application of plant growth regulators and nutrients under drought stress in chickpea (Cicer arietinum L.). Arch. Curr. Res. Int. 24(1), 13–23 (2024).

    Article 

    Google Scholar
     

  • Bhuker, A. et al. Probing the phytochemical composition and antioxidant activity of Moringa oleifera under ideal germination conditions. Plants 12(16), 3010 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rathore, M., Yellanki Pravalika, R. K., Tutlani, A. & Aggarwal, N. Enhancing seed quality and insect management in wheat (Triticum aestivum L.) through optimization of storage treatments with natural and chemical compounds. Plant Arch. 24(1), 26–36 (2024).

    Article 

    Google Scholar
     

  • Naseer, I. et al. Alleviation mechanism of drought stress in plants using metal nanoparticles—A perspective analysis. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance 115–149 (Springer International Publishing, 2022).


    Google Scholar
     

  • Jangam, D., Tollamadugu, N. V. K. V. P., Challa, S. R., Luther Manchala, M. & Vatluri, S. R. Conjunctive and concentration dependent effects of nanoscale zinc and boron on the physiological, biochemical, nutrient uptake, and translocation processes in peanut (Arachis hypogaea L.). J. Plant Nutr. 46(18), 4494–4518 (2023).

    Article 

    Google Scholar
     

  • Ali, A. S. & Elozeiri, A. A. Metabolic processes during seed germination. Adv. Seed Biol. 2017, 141–166 (2017).


    Google Scholar
     

  • Hossain, Z., Yasmeen, F. & Komatsu, S. Nanoparticles: Synthesis, morphophysiological effects, and proteomic responses of crop plants. Int. J. Mol. Sci. 21(9), 3056 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latef, A. A. H. A., Alhmad, M. F. A. & Bdelfattah, K. E. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 36(1), 60–70 (2017).

    Article 

    Google Scholar
     

  • Dangi, S., Biradarpatil, N. K., Deshpande, V. K., Hunje, R. & Mogali, S. Effect of seed treatment with nanoparticles on seed storability of soybean. Int. J. Curr. Microbiol. Appl. Sci. 8(11), 2535–2545 (2019).

    Article 

    Google Scholar
     

  • Surabhi, V. K., Rame, G. & Nethra, N. Influence of seed treatment with nanoparticles on seed quality and storability of pigeonpea cv. BRG-2. Int. J. Chem. Stud. 9(1), 3645–3651 (2021).

    Article 

    Google Scholar
     

  • Korishettar, P. et al. Influence of seed polymer coating with Zn and Fe nanoparticles on storage potential of pigeonpea seeds under ambient conditions. J. Appl. Nat. Sci. 9(1), 186–191 (2017).


    Google Scholar
     

  • Aqeel, U., Aftab, T., Khan, M. M. A., Naeem, M. & Khan, M. N. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 291, 132672 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Maroufi, K., Farahani, H. A. & Moradi, O. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Adv. Environ. Biol. 5(11), 3659–3663 (2011).


    Google Scholar
     

  • Vijayalakshmi, V., Ramamoorthy, K. & Natarajan, N. TiO2 Nanoparticles on extending seed vigour and viability of naturally aged maize (Zea mays L.) seeds. J. Pharmacogn. Phytochem. 7(1), 2221–2224 (2018).


    Google Scholar
     

  • Wu, S. G. et al. Electrospray facilitates the germination of plant seeds. Aerosol Air Qual. Res. 14, 632–641 (2014).

    Article 

    Google Scholar
     

  • Ghorbanpour, M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol. 20(3), 249–256 (2015).

    Article 

    Google Scholar
     

  • Song, G. et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 31(9), 2147–2152 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gaur, A., Kumar, A., Kiran, R. & Kumari, P. Importance of seed-borne diseases of agricultural crops: Economic losses and impact on society. In Seed-borne Diseases of Agricultural Crops: Detection, Diagnosis and Management, 3–23 (2020).

  • Consolo, V. F., Torres-Nicolini, A. & Alvarez, V. A. Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci. Rep. 10, 1–9 (2020).

    Article 

    Google Scholar
     

  • Sedaghati, E., Molaei, S., Molaei, M. & Doraki, N. An evaluation of antifungal and antitoxigenicity effects of Ag/Zn and Ag nanoparticles on Aspergillus parasiticus growth and aflatoxin production. Pistachio Health J. 1(2), 34–43 (2018).


    Google Scholar
     

  • Nayantara, K. P. Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnol. Res. Innov. 2, 63–73 (2018).

    Article 

    Google Scholar
     

  • Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M. & Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 123, 505–526 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, A. et al. Phytic acid: A reservoir of phosphorus in seeds plays a dynamic role in plant and animal metabolism. Phytochem. Rev. 22(5), 1281–1304 (2023).

    Article 

    Google Scholar
     

  • Ocvirk, D. et al. Seed germinability after imbibition in electrical conductivity test and relations among maize seed vigour parameters. J. Food Agric. Environ. 12, 140–145 (2014).


    Google Scholar
     

  • Bowler, C., Montagu, M. V. & Inze, D. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mole. Biol. 43(1), .83–116 (1992).


    Google Scholar
     

  • Boeckx, T., Winters, A. L., Webb, K. J. & Kingston-Smith, A. H. Polyphenol oxidase in leaves: Is there any significance to the chloroplastic localization?. J. Exp. Bot. 66(12), 3571–3579 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sehgal, A. et al. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 9, 1705 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037 (2012).

    Article 

    Google Scholar
     

  • Ghows, N. Entezari, M. H. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination. Ultrason. Sonochem. 17(5), .878–883 (1992).

    Article 

    Google Scholar
     

  • ISTA. International rules for seed testing. Seed Sci. Technol. 23, 1–334 (1999).


    Google Scholar
     

  • Abdul-Baki, A. & Anderson, J. D. Vigour determination in soybean seed by multiple criteria. Crop Sci. 13, 630–633 (1973).

    Article 

    Google Scholar
     

  • Bernfeld, P. In Methods in Enzymology (eds Colowick, S. P. & Kaplan, N. O.) 149–158 (Academic Press, 1955).

    Chapter 

    Google Scholar
     

  • Kittock, D. L. & Law, A. G. Relationship of seedling vigour, respiration and tetrazolium chloride reduction by germination of wheat seeds. Agron. J. 60, 286–288 (1968).

    Article 

    Google Scholar
     

  • Rao, M. V., Watkins, C. B., Brown, S. K. & Weeden, N. F. Active oxygen species metabolism in ‘White Angel’ × ‘Rome Beauty’ apple selections resistant and susceptible to superficial scald. J. Am. Soc. Hortic. Sci. 123, 299–304 (1996).

    Article 

    Google Scholar
     

  • Chance, B. & Maehly, A. C. Assay of catalases and peroxidases. Methods Enzymol. 2, 764–775 (1955).

    Article 

    Google Scholar
     

  • Shannon, L. M., Key, E. & Law, J. Y. Peroxidase isoenzymes from horse reddish roots: Isolation and physical properties. J. Biol. Chem. 241, 2166–2172 (1966).

    Article 
    PubMed 

    Google Scholar
     

  • Taneja, S. R. & Sachar, R. C. Induction of polyphenol oxidase in germinating wheat seeds. Phytochemistry 13, 2695–2702 (1974).

    Article 

    Google Scholar
     

  • Cakmak, I. & Horst, W. J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83(3), 463–468 (1991).

    Article 

    Google Scholar
     

  • Elstner, E. F. & Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Anal. Biochem. 70, 616–620 (1976).

    Article 
    PubMed 

    Google Scholar
     

  • Panse, V. G. & Sukhatme, P. V. Statistical Methods for Agricultural Workers 4th edn. (ICAR, 1985).


    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    Simple timing changes that could lower energy bills

    Commodities

    70000 Tons Of Metal 2026 review: Anthrax, Paradise Lost & more

    Commodities

    Study shows best way to warm home and slash energy bills

    Commodities

    UK Energy Capacity Growth Lags Global Average Amid Rising Costs and Delays

    Commodities

    Praise from Ed Miliband as community energy schemes in Walsall and Shrewsbury share £750,000 funding boost

    Commodities

    China is the planet’s clean energy superpower but there’s another country snapping at its heels — and it’s moving even faster

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Fintech

    Les fintech africaines ont capté plus de 1 milliard $ en 2024, soit 47% du total mondial levé

    Fintech

    la vision panafricaine d’Ismail Douiri pour Attijariwafa bank – Telquel.ma

    Commodities

    Megadeth, Dave Mustaine announce farewell tour, final album: ‘Don’t be mad, don’t be sad’

    Editors Picks

    The smarter property bet lenders can’t ignore

    August 25, 2025

    ‘ABCD’ agricultural traders struggle to escape boom-bust cycle

    March 18, 2025

    OPay emerges as only fintech with three wins at 2025 BAFI Awards

    October 13, 2025

    Kyrgyzstan Launches National Stablecoin, Sets Up Cryptocurrency Reserve: CZ

    October 25, 2025
    What's Hot

    Ghana’s cocoa sector set to benefit from new high-integrity carbon asset initiative

    August 28, 2025

    Small biz fintech Fundbox uses partnerships to fuel growth

    December 1, 2025

    5 ways to make your pension last

    January 27, 2026
    Our Picks

    Proposition de médiation entre Barrick Gold et l’État malien

    March 17, 2025

    Gold and other precious metals are leaking from the earth’s core

    June 2, 2025

    Adam Azim vs Ohara Davies – 19 Oct 2024, Copper Box Arena, London

    October 19, 2024
    Weekly Top

    Silver Price Analysis – Silver Continues to Look for Its Range on Wednesday

    February 11, 2026

    Henry Chen’s Vision for the Next Phase of Fintech and Digital Asset Innovation

    February 11, 2026

    Simple timing changes that could lower energy bills

    February 11, 2026
    Editor's Pick

    les fondamentaux de l’or restent bons

    September 4, 2007

    It’s going to smack people upside of their earholes

    January 27, 2026

    Net zero costs ‘will add £100 to household energy bills from April’

    September 18, 2025
    © 2026 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.