Punia, H. et al. Genome-wide transcriptome profiling, characterization, and functional identification of NAC transcription factors in sorghum under salt stress. Antioxidants 10(10), 1605 (2021).
Singh, N. et al. Synthesis and characterization of metal-based nanoparticles and their effect on seed quality parameters of American varieties of cotton. Mater. Today Proc. 69, 87–95 (2022).
OECD/FAO. OECD-FAO Agricultural Outlook (Edition 2020). OECD Agriculture Statistics (Database) https://doi.org/10.1787/4919645f-en (2020).
Goyal, A. & Parashar, M. Organic cotton and BCI-certified cotton fibres. In Sustainable Fibres for Fashion and Textile Manufacturing 51–74 (Woodhead Publishing, 2023).
Nazeer, W., Zia, Z. U., Qadir, M., Ahmad, S. & Shahid, M. R. Sustainable cotton production in Punjab: Failure and its mitigating strategies. In Sustainable Agriculture in the Era of the OMICs Revolution 483–500 (Springer International Publishing, 2023).
Ben-Gal, A., Tal, A. & Tel-Zur, N. The sustainability of arid agriculture: Trends and challenges. Ann. Arid Zone 45(3/4), 227 (2006).
Akhtar, M. N., Akhtar, M. W., Rahi, A. A. & ul Haq, T. Enhancing water use efficiency by using potassium-efficient cotton cultivars based on morphological and biochemical characteristic (2023).
Maity, A. et al. Climate change impacts on seed production and quality: Current knowledge, implications, and mitigation strategies. Seed Sci. Technol. 51(1), 7–38 (2023).
Punia, H. et al. Ascorbate–glutathione oxidant scavengers, metabolome analysis and adaptation mechanisms of ion exclusion in sorghum under salt stress. Int. J. Mol. Sci. 22(24), 13249 (2021).
Chinnamuthu, C. R. & Boopathi, P. M. Nanotechnology and agroecosystem. Madras Agric. J. 96, 1 (2009).
Vega-Fernández, L., Quesada-Grosso, R., Viñas, M., Irías-Mata, A., Montes de Oca-Vásquez, G., Vega-Baudrit, J. & Jiménez, V. M. Current applications and future perspectives of nanotechnology for the preservation and enhancement of grain and seed traits. In Nanomaterials for Environmental and Agricultural Sectors, 191–220 (2023).
Arshad, M. et al. Multi-element uptake and growth responses of rice (Oryza sativa L.) to TiO2 nanoparticles applied in different textured soils. Ecotoxicol. Environ. Saf. 215, 112149 (2021).
Pokhrel, L. R. & Dubey, B. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 452, 321–332 (2013).
Pan, X. et al. Effective control of the tomato wilt pathogen using TiO2 nanoparticles as a green nanopesticide. Environ. Sci. Nano 10(5), 1441–1452 (2023).
Mahajan, P., Dhoke, S. K. & Khanna, A. S. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol. https://doi.org/10.1155/2011/696535 (2011).
Dimkpa, C. O. et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol. 47(2), 1082–1090 (2013).
Anandaraj, K. & Natarajan, N. Effect of nanoparticles for seed quality enhancement in onion [Allium cepa (Linn) cv. CO (On)] 5. Int. J. Curr. Microbiol. Appl. Sci 6(11), 3714–3724 (2017).
Shyla, K. K. & Natarajan, N. Effect of nanoparticles in volatile production during seed storage of groundnut. Int. J. Agric. Sci. 12, 1191–1198 (2016).
Singh, P., Mor, V. S., Malik, A., Punia, H. & Bhuker, A. Biochemical responses to natural and accelerated ageing on seed quality in Indian mustard (Brassica juncea). Indian J. Agric. Sci. 92(7), 882–885 (2022).
Punia, H., Tokas, J., MalikSatpal, A. & Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 49, 343–353 (2021).
Punia, H. et al. Deciphering reserve mobilization, antioxidant potential, and expression analysis of starch synthesis in sorghum seedlings under salt stress. Plants 10(11), 2463 (2021).
Punia, H. et al. Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. South Afr. J. Bot. 140, 409–418 (2021).
Vijayalakshmi, V., Ramamoorthy, K. & Natarajan, N. TiO2 nano particles on extending seed vigour and viability of naturally aged maize (Zea mays L.) seeds. J. Pharmacogn. Phytochem. 7(1), 2221–2224 (2018).
Puttappanavara, B. M. & Deshpande, V. K. Effect of nanoparticles on storability of KRH-4 hybrid rice seeds. Bull. Environ. Pharmacol. Life Sci. 8, 99–100 (2019).
Maeda, A. B., Wells, L. W., Sheehan, M. A. & Dever, J. K. Stories from the greenhouse—A brief on cotton seed germination. Plants 10(12), 2807 (2021).
Malik, A. et al. Development and optimization of label-free quantitative proteomics under different crossing periods of bottle gourd. Curr. Issues Mol. Biol. 45(2), 1349–1372 (2023).
Malik, A. et al. Investigating mineral accumulation and seed vigor potential in bottle gourd (Lagenaria siceraria) through crossbreeding timing. Plants 12(23), 3998 (2023).
Adetunji, A. E., Adetunji, T. L., Varghese, B., Sershen, & Pammenter, N. W. Oxidative stress, ageing and methods of seed invigoration: An overview and perspectives. Agronomy 11(12), 2369 (2021).
Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N. & Joshi, O. P. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl. Soil Ecol. 73, 87–96 (2014).
Jassem, A. F., Rachana, S., Jyoti, Y. & Sakharam, D. A. Synthesis of silver nanoparticles from Fargesia sp. Jiuzhaigou leaf and investigating its effects on plant growth. Int. Res. J. Sci. Eng. A2, 23–26 (2018).
Thuesombat, P., Hannongbua, S., Akasit, S. & Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 104, 302–309 (2014).
Dhoke, S. K., Mahajan, P., Kamble, R. & Khanna, A. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol. Dev. 3(1), e1 (2013).
Raliya, R., Nair, R., Chavalmane, S., Wang, W. N. & Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12), 1584–1594 (2015).
Almutairi, Z. M. & Alharbi, A. Effect of silver nanoparticles on seed germination of crop plants. J. Adv. Agric. 4(1), 280–285 (2015).
Raskar, S. V. & Laware, S. L. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci. 3(2), 467–473 (2014).
Lin, D. & Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).
Xiang, L. et al. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 22, 10452–10462 (2015).
Hojjat, S. & Hojjat, H. Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int. J. Food Eng. 1(2), 106–110 (2015).
Sharma, P. et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167, 2225–2233 (2012).
Yang, F. et al. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119(1), 77–88 (2007).
Dehkourdi, E. H., Chehrazi, M., Hosseini, H. & Hosseini, M. The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.). Int. J. Biosci. 4(5), 141–145 (2014).
Moghaddam, A. B., Nazari, T., Badraghi, J. & Kazemzad, M. Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int. J. Electrochem. Sci. 4, 247–257 (2009).
Lusvardi, G., Barani, C., Giubertoni, F. & Paganelli, G. Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10, 1208 (2017).
Mezni, A., Alghool, S., Sellami, B., Saber, N. B. & Altalhi, T. Titanium dioxide nanoparticles: Synthesis, characterisations and aquatic ecotoxicity effects. Chem. Ecol. 34(3), 288–299 (2018).
Ramakrishnan, R. S. et al. Seed germination and seed vigour induction through foliar application of plant growth regulators and nutrients under drought stress in chickpea (Cicer arietinum L.). Arch. Curr. Res. Int. 24(1), 13–23 (2024).
Bhuker, A. et al. Probing the phytochemical composition and antioxidant activity of Moringa oleifera under ideal germination conditions. Plants 12(16), 3010 (2023).
Rathore, M., Yellanki Pravalika, R. K., Tutlani, A. & Aggarwal, N. Enhancing seed quality and insect management in wheat (Triticum aestivum L.) through optimization of storage treatments with natural and chemical compounds. Plant Arch. 24(1), 26–36 (2024).
Naseer, I. et al. Alleviation mechanism of drought stress in plants using metal nanoparticles—A perspective analysis. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance 115–149 (Springer International Publishing, 2022).
Jangam, D., Tollamadugu, N. V. K. V. P., Challa, S. R., Luther Manchala, M. & Vatluri, S. R. Conjunctive and concentration dependent effects of nanoscale zinc and boron on the physiological, biochemical, nutrient uptake, and translocation processes in peanut (Arachis hypogaea L.). J. Plant Nutr. 46(18), 4494–4518 (2023).
Ali, A. S. & Elozeiri, A. A. Metabolic processes during seed germination. Adv. Seed Biol. 2017, 141–166 (2017).
Hossain, Z., Yasmeen, F. & Komatsu, S. Nanoparticles: Synthesis, morphophysiological effects, and proteomic responses of crop plants. Int. J. Mol. Sci. 21(9), 3056 (2020).
Latef, A. A. H. A., Alhmad, M. F. A. & Bdelfattah, K. E. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J. Plant Growth Regul. 36(1), 60–70 (2017).
Dangi, S., Biradarpatil, N. K., Deshpande, V. K., Hunje, R. & Mogali, S. Effect of seed treatment with nanoparticles on seed storability of soybean. Int. J. Curr. Microbiol. Appl. Sci. 8(11), 2535–2545 (2019).
Surabhi, V. K., Rame, G. & Nethra, N. Influence of seed treatment with nanoparticles on seed quality and storability of pigeonpea cv. BRG-2. Int. J. Chem. Stud. 9(1), 3645–3651 (2021).
Korishettar, P. et al. Influence of seed polymer coating with Zn and Fe nanoparticles on storage potential of pigeonpea seeds under ambient conditions. J. Appl. Nat. Sci. 9(1), 186–191 (2017).
Aqeel, U., Aftab, T., Khan, M. M. A., Naeem, M. & Khan, M. N. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 291, 132672 (2022).
Maroufi, K., Farahani, H. A. & Moradi, O. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Adv. Environ. Biol. 5(11), 3659–3663 (2011).
Vijayalakshmi, V., Ramamoorthy, K. & Natarajan, N. TiO2 Nanoparticles on extending seed vigour and viability of naturally aged maize (Zea mays L.) seeds. J. Pharmacogn. Phytochem. 7(1), 2221–2224 (2018).
Wu, S. G. et al. Electrospray facilitates the germination of plant seeds. Aerosol Air Qual. Res. 14, 632–641 (2014).
Ghorbanpour, M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant Physiol. 20(3), 249–256 (2015).
Song, G. et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ. Toxicol. Chem. 31(9), 2147–2152 (2012).
Gaur, A., Kumar, A., Kiran, R. & Kumari, P. Importance of seed-borne diseases of agricultural crops: Economic losses and impact on society. In Seed-borne Diseases of Agricultural Crops: Detection, Diagnosis and Management, 3–23 (2020).
Consolo, V. F., Torres-Nicolini, A. & Alvarez, V. A. Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci. Rep. 10, 1–9 (2020).
Sedaghati, E., Molaei, S., Molaei, M. & Doraki, N. An evaluation of antifungal and antitoxigenicity effects of Ag/Zn and Ag nanoparticles on Aspergillus parasiticus growth and aflatoxin production. Pistachio Health J. 1(2), 34–43 (2018).
Nayantara, K. P. Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnol. Res. Innov. 2, 63–73 (2018).
Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M. & Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 123, 505–526 (2018).
Kumar, A. et al. Phytic acid: A reservoir of phosphorus in seeds plays a dynamic role in plant and animal metabolism. Phytochem. Rev. 22(5), 1281–1304 (2023).
Ocvirk, D. et al. Seed germinability after imbibition in electrical conductivity test and relations among maize seed vigour parameters. J. Food Agric. Environ. 12, 140–145 (2014).
Bowler, C., Montagu, M. V. & Inze, D. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mole. Biol. 43(1), .83–116 (1992).
Boeckx, T., Winters, A. L., Webb, K. J. & Kingston-Smith, A. H. Polyphenol oxidase in leaves: Is there any significance to the chloroplastic localization?. J. Exp. Bot. 66(12), 3571–3579 (2015).
Sehgal, A. et al. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 9, 1705 (2018).
Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037 (2012).
Ghows, N. Entezari, M. H. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination. Ultrason. Sonochem. 17(5), .878–883 (1992).
ISTA. International rules for seed testing. Seed Sci. Technol. 23, 1–334 (1999).
Abdul-Baki, A. & Anderson, J. D. Vigour determination in soybean seed by multiple criteria. Crop Sci. 13, 630–633 (1973).
Bernfeld, P. In Methods in Enzymology (eds Colowick, S. P. & Kaplan, N. O.) 149–158 (Academic Press, 1955).
Kittock, D. L. & Law, A. G. Relationship of seedling vigour, respiration and tetrazolium chloride reduction by germination of wheat seeds. Agron. J. 60, 286–288 (1968).
Rao, M. V., Watkins, C. B., Brown, S. K. & Weeden, N. F. Active oxygen species metabolism in ‘White Angel’ × ‘Rome Beauty’ apple selections resistant and susceptible to superficial scald. J. Am. Soc. Hortic. Sci. 123, 299–304 (1996).
Chance, B. & Maehly, A. C. Assay of catalases and peroxidases. Methods Enzymol. 2, 764–775 (1955).
Shannon, L. M., Key, E. & Law, J. Y. Peroxidase isoenzymes from horse reddish roots: Isolation and physical properties. J. Biol. Chem. 241, 2166–2172 (1966).
Taneja, S. R. & Sachar, R. C. Induction of polyphenol oxidase in germinating wheat seeds. Phytochemistry 13, 2695–2702 (1974).
Cakmak, I. & Horst, W. J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83(3), 463–468 (1991).
Elstner, E. F. & Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Anal. Biochem. 70, 616–620 (1976).
Panse, V. G. & Sukhatme, P. V. Statistical Methods for Agricultural Workers 4th edn. (ICAR, 1985).