Close Menu
Invest Intellect
    Facebook X (Twitter) Instagram
    Invest Intellect
    Facebook X (Twitter) Instagram Pinterest
    • Home
    • Commodities
    • Cryptocurrency
    • Fintech
    • Investments
    • Precious Metal
    • Property
    • Stock Market
    Invest Intellect
    Home»Commodities»Agricultural intensification in Lake Naivasha Catchment in Kenya and associated nutrients and pesticides pollution
    Commodities

    Agricultural intensification in Lake Naivasha Catchment in Kenya and associated nutrients and pesticides pollution

    August 9, 202417 Mins Read


  • Nijbroek, R. P. & Andelman, S. J. Regional suitability for agricultural intensification: A spatial analysis of the southern agricultural growth corridor of Tanzania. Int. J. Agric. Sustain. 14, 231–247 (2016).


    Google Scholar
     

  • Nziguheba, G. et al. Phosphorus in smallholder farming systems of sub-Saharan Africa: Implications for agricultural intensification. Nutr. Cycl. Agroecosyst. 104, 321–340 (2016).


    Google Scholar
     

  • Willy, D. K., Muyanga, M. & Jayne, T. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 81, 100–110 (2019).


    Google Scholar
     

  • Sheahan, M. & Ten Barrett, C. B. Striking facts about agricultural input use in Sub-Saharan Africa. Food Policy 67, 12–25 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holden, S. T. Fertilizer and sustainable intensification in Sub-Saharan Africa. Glob. Food. Sec. 18, 20–26 (2018).


    Google Scholar
     

  • Sileshi, G. W. et al. Nutrient use efficiency and crop yield response to the combined application of cattle manure and inorganic fertilizer in sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 113, 181–199 (2019).

    CAS 

    Google Scholar
     

  • Cowling, N. Agricultural use of fertilizers in Kenya 2015–2019, by type. Statistica https://www.statista.com/statistics/1289850/agricultural-use-of-fertilizers-in-kenya-by-type/ (2023).

  • OEC. Pesticides in Kenya. OEC Online https://oec.world/en/profile/bilateral-product/pesticides/reporter/ken?yearExportSelector=exportYear2 (2024).

  • Bollmohr, S. Toxic Business: Highly Hazardous Pesticides in Kenya. https://ke.boell.org/sites/default/files/2023-09/data-and-facts_highly-hazardous-pesticides-in-kenya-1.pdf (2023).

  • Salgado, J. et al. Eutrophication homogenizes shallow lake macrophyte assemblages over space and time. Ecosphere 9, 1–15 (2018).

    MathSciNet 

    Google Scholar
     

  • Zhang, Y. et al. Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes. Limnol. Oceanogr. 64, 1047–1058 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Nellemann, C. et al. GLOBIO. Global Methodology for Mapping Human Impacts on the Biosphere. Development vol. UNEP/DEWA/TR.01-3 (UNEP, 2001).

  • Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. 0. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).


    Google Scholar
     

  • Dodds, W. K. & Smith, V. H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164 (2016).

    CAS 

    Google Scholar
     

  • Phillips, G., Harper, D. M., Kitaka, N., Mavuti, K. & Chilvers, A. Eutrophication prognosis for Lake Naivasha, Kenya. SIL Proc. 1922–2010 https://doi.org/10.1080/03680770.1992.11900268 (2017).

    Article 

    Google Scholar
     

  • Skei, J. et al. Eutrophication and contaminants in aquatic ecosystems. AMBIO J. Hum. Environ. 29, 184–194 (2000).


    Google Scholar
     

  • Smith, V. H., Joye, S. B. & Howarth, R. W. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 51, 351–355 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002).


    Google Scholar
     

  • Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B Biol. Sci. 282, 1809 (2015).


    Google Scholar
     

  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A. & Hakeem, K. R. Effects of Pesticides on Environment. in Plant, Soil and Microbes (eds. Hakeem, K. R., Akhtar, M. S. & Abdullah, S. N. A.) 253–269 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-27455-3_13.

  • Jayaraj, R., Megha, P. & Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 9, 90–100 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Onyango, J., Kreuzinger, N. & Nzula, K. Pesticides Residues Contamination in Lake Naivasha Catchment, Kenya (KS Omniscriptum Publishing, 2015).


    Google Scholar
     

  • van Oel, P. R. et al. The effects of groundwater and surface water use on total water availability and implications for water management: The case of lake Naivasha, Kenya. Water Resour. Manag. 27, 3477–3492 (2013).


    Google Scholar
     

  • Awange, J. L. et al. Understanding the decline of water storage across the Ramsar-Lake Naivasha using satellite-based methods. Adv. Water Resour. 60, 7–23 (2013).

    ADS 

    Google Scholar
     

  • Willy, D. K., Zhunusova, E. & Holm-Müller, K. Estimating the joint effect of multiple soil conservation practices: A case study of smallholder farmers in the Lake Naivasha basin, Kenya. Land Use Policy 39, 177–187 (2014).


    Google Scholar
     

  • Clarke, M. C. G. Geological, volcanological and hydrogeological controls on the occurrence of geothermal activity in the area surrounding lake Naivasha, Kenya: With coloured 1: 250 000 geological maps. J. Petrol. https://doi.org/10.1093/petrology/egp049 (1990).

    Article 

    Google Scholar
     

  • Ndungu, J. et al. A multivariate analysis of water quality in Lake Naivasha, Kenya. Mar. Freshw. Res. 66, 177–186 (2015).

    CAS 

    Google Scholar
     

  • Odongo, V. O. How Climate and Land Use Determine the Hydrology of Lake Naivasha Basin (University of Twente, 2016). https://doi.org/10.3990/1.9789036542333.

    Book 

    Google Scholar
     

  • Mekonnen, M. M., Hoekstra, A. Y. & Becht, R. Mitigating the water footprint of export cut flowers from the lake Naivasha Basin, Kenya. Water Resour. Manag. 26, 3725–3742 (2012).


    Google Scholar
     

  • Otiang’a-Owiti, G. E. & Oswe, I. A. Human impact on lake ecosystems: The case of Lake Naivasha, Kenya. Afr. J. Aquat. Sci. 32, 79–88 (2007).


    Google Scholar
     

  • APHA. Standard Methods for the Examination of Water and Wastewater American Public Health Association, American Water Works Association, Water Environment Federation (APHA-AWWA-WEF, 2012). https://doi.org/10.1520/E0536-16.2.

    Book 

    Google Scholar
     

  • Abong’o, A. D., Shem, O. W., Isaac, O. J., Vincent, O. M. & Henrik, K. Impacts of pesticides on human health and environment in the river Nyando Catchment, Kenya. Int. J. Hum. Arts Med. Sci. 2, 1–14 (2014).


    Google Scholar
     

  • van Oel, P. R. et al. Supporting IWRM through spatial integrated assessment in the Lake Naivasha basin, Kenya. Int. J. Water. Resour. Dev. 30, 605–618 (2014).


    Google Scholar
     

  • Körtzinger, A., Hedges, J. I. & Quay, P. D. Redfield ratios revisited: Removing the biasing effect of anthropogenic CO2. Limnol. Oceanogr. 46, 964 (2001).

    ADS 

    Google Scholar
     

  • They, N. H., Amado, A. M. & Cotner, J. B. Redfield ratios in inland waters: Higher biological control of C:N: P ratios in tropical semi-arid high water residence time lakes. Front. Microbiol. 8, 1505 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Nemr, A., Moneer, A. A., Khaled, A. & El-Sikaily, A. Contamination and risk assessment of organochlorines in surface sediments of Egyptian Mediterranean coast. Egypt J. Aquat. Res. 38, 7–21 (2012).


    Google Scholar
     

  • Pinkney, A. E. & Mcgowan, P. C. Use of the p, p′-DDD: p, p′-DDE concentration ratio to trace contaminant migration from a hazardous waste site. Environ. Monit. Assess. 120, 559–574 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G. et al. Time trend of BHCs and DDTs in a sedimentary core in Macao Estuary, Southern China. Mar. Pollut. Bull. 39, 326–330 (1999).

    CAS 

    Google Scholar
     

  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for DDT, DDE, and DDD. Toxicological Profile for DDT, DDE, DDD (Department of Health and Human Services, Public Health Service, 2022). https://doi.org/10.1201/9781420061888_ch69

  • Tavares, T. M., Beretta, M. & Costa, M. C. Ratio of DDT/DDE in the All Saints Bay, Brazil and its use in environmental management. Chemosphere 38, 1445–1452 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Vijgen, J., Yi, L. F., Forter, M., Weber, R. & Lal, R. The legacy of lindane and technical HCH production. Organohalogen Compounds 68, 899–904 (2006).

    CAS 

    Google Scholar
     

  • Mössner, S., Spraker, T. R., Becker, P. R. & Ballschmiter, K. Ratios of enantiomers of alpha-HCH and determination of alpha-, beta-, and gamma-HCH isomers in brain and other tissues of neonatal Northern fur seals (Callorhinus ursinus). Chemosphere 24, 1171–1180 (1992).

    ADS 

    Google Scholar
     

  • Gore, J. A. & Banning, J. Discharge measurements and streamflow analysis. In Methods in Stream Ecology 3rd edn, Vol. 1 (eds Hauer, F. R. et al.) 49–70 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-416558-8.00003-2.

    Chapter 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • Chambers, J. M. & Hastie, T. J. Statistical Models in S Statistical Models in S (Routledge, 2017). https://doi.org/10.1201/9780203738535.

    Book 

    Google Scholar
     

  • US EPA. Water quality criteria, in Water Quality Standards Hand Book 28 (EPA Office of Water, Office of Science and Technology, 2014). EPA 820-B-14-008.

  • WASREB. Guidelines on Drinking Water Quality and Effluent Monitoring. https://wasreb.go.ke/downloads/Water_Quality_&_Effluent_Monitoring_Guidelines.pdf (2008).

  • Tyrrell, T. Redfield ratio. Encycl. Ocean Sci. https://doi.org/10.1016/B978-0-12-409548-9.11281-3 (2001).

    Article 

    Google Scholar
     

  • Odongo, V. O. et al. Coupling socio-economic factors and eco-hydrological processes using a cascade-modeling approach. J. Hydrol. (Amst) 518, 49–59 (2014).

    ADS 

    Google Scholar
     

  • Sulastri, N., Aisyah, S. & Dina, R. Trophic status and phytoplankton community structure of four small lakes in Ciliwung watershed, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 950, 10 (2022).


    Google Scholar
     

  • Mutia, T. M. et al. Copper, lead and cadmium concentrations in surface water, sediment and fish, C. Carpio, samples from Lake Naivasha: Effect of recent anthropogenic activities. Environ. Earth Sci. 67, 1121–1130 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Ogendi, G. M. et al. Heavy metal concentrations in water, sediments and common carp (Cyprinus carpio) fish species from lake Naivasha, Kenya. Res. J. Environ. Earth Sci. 6, 416–423 (2014).


    Google Scholar
     

  • Everard, M. et al. The physical attributes of the Lake Naivasha catchment rivers. In Lake Naivasha, Kenya 13–25 (Springer, 2002). https://doi.org/10.1007/978-94-017-2031-1_2.

    Chapter 

    Google Scholar
     

  • Binkley, D., Ice, G. G., Kaye, J. & Williams, C. A. Nitrogen and phosphorus concentrations in forest streams of the United States. J. Am. Water Resour. Assoc. 40, 1277 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Nõges, P., van de Bund, W., Cardoso, A. C., Solimini, A. G. & Heiskanen, A.-S. Assessment of the ecological status of European surface waters: A work in progress. Hydrobiologia 633, 197–211 (2009).


    Google Scholar
     

  • Rodriguez, A. F., Tootoonchi, M. & Daroub, S. H. Changes in nitrogen and phosphorus within a decade in waters along a major canal and estuary in South Florida. J. Environ. Qual. 51, 826–836 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Shinohara, R. et al. Evaluation of the impact of water dilution within the hypereutrophic Lake Barato, Japan. Lake Reserv. Manag. 24, 301–312 (2008).


    Google Scholar
     

  • Vollenweider, R. A. & Kerekes, J. The loading concept as basis for controlling eutrophication philosophy and preliminary results of the oecd programme on eutrophication. In Eutrophication of Deep Lakes 5–38 (Elsevier, 1980).


    Google Scholar
     

  • Yongo, E., Agembe, S. W., Manyala, J. O. & Mutethya, E. Assessment of the current trophic state and water quality of Lake Naivasha, Kenya using multivariate techniques. Lakes Reserv. Sci. Policy Manag. Sustain. Use 28, e12422 (2023).

    CAS 

    Google Scholar
     

  • Kitaka, N., Harper, D. M. & Mavuti, K. M. Phosphorus inputs to Lake Naivasha, Kenya, from its catchment and the trophic state of the lake. In Lake Naivasha, Kenya (ed. Naivasha, L.) 73–80 (Springer, 2002).


    Google Scholar
     

  • Lin, J. et al. Context is everything: Interacting inputs and landscape characteristics control stream nitrogen. Environ. Sci. Technol. 55, 7890–7899 (2021).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Phuong, H. T., Thanh, H. T. K., Huu, L. T. & Saito, M. Spatial and temporal variabilities of suspended sediment and dissolved nutrients in the Ca River Basin, North Central Vietnam. Water Pract. Technol. 18, 408–418 (2023).


    Google Scholar
     

  • Abbasi, Y., Mannaerts, C. M. & Makau, W. Modeling pesticide and sediment transport in the Malewa River Basin (Kenya) using SWAT. Water 11, 87 (2019).

    CAS 

    Google Scholar
     

  • Van Den Berg, H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environ. Health Perspect. https://doi.org/10.1289/ehp.0900785 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasselli, S., Marziali, L., Roscioli, C. & Guzzella, L. Legacy dichlorodiphenyltrichloroethane (DDT) pollution in a river ecosystem: Sediment contamination and bioaccumulation in benthic invertebrates. Sustainability 15, 6493 (2023).

    CAS 

    Google Scholar
     

  • Janjua, M. R. S. A. Prediction and understanding: Quantum chemical framework of transition metals enclosed in a B12N12 inorganic nanocluster for adsorption and removal of DDT from the environment. Inorg. Chem. 60, 10837–10847 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ukalska-Jaruga, A., Smreczak, B. & Siebielec, G. Assessment of pesticide residue content in polish agricultural soils. Molecules 25, 587 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasseghian, Y., Hosseinzadeh, S., Khataee, A. & Dragoi, E.-N. The concentration of persistent organic pollutants in water resources: A global systematic review, meta-analysis and probabilistic risk assessment. Sci. Total Environ. 796, 149000 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, D. & Liu, G. The effects of DDT on the feeding, respiration, survival, and reproduction of Sinocalanus tenellus (Copepoda: Calanoida). Acta Oceanol. Sin. https://doi.org/10.1007/s13131-014-0524-4 (2014).

    Article 

    Google Scholar
     

  • Yu, R. et al. Distribution, transfer, and health risk of organochlorine pesticides in soil and water of the Huangshui River Basin. Toxics 11, 1024 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, P. et al. Spatial distribution of persistent organic pollutants in the surface water of River Brahmaputra and River Ganga in India. Rev. Environ. Health 29, 45–48 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Onyango, J., Kreuzinger, N., Yillia, P. T. & Kitaka, N. Potential risks of pesticide application in Kenya: Case of Lake Naivasha Catchment, in International Young Water Professionals Conference (International Young Water Professionals, Taipei, Taiwan, 2014).

  • Njogu, P. M. Assessment of pollution and prediction of environmental risks of organochlorine pesticide residues on aquatic communities in Lake Naivasha, Kenya (Jomo Kenyatta University of Agriculture and Technology, 2011).


    Google Scholar
     

  • Singh, S. et al. Global distribution of pesticides in freshwater resources and their remediation approaches. Environ. Res. 225, 115605 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Leenhardt, S., Mamy, L., Pesce, S. & Sanchez, W. Impacts of Plant Protection Products on Biodiversity and Ecosystem Services (Éditions Quæ, 2023).


    Google Scholar
     

  • Gitahi, S. M., Harper, D. M., Muchiri, S. M., Tole, M. P. & Nganga, R. N. Organochlorine and organophosphorus pesticide concentrations in water, sediment, and selected organisms in Lake Naivasha (Kenya). In Lake Naivasha, Kenya (ed. Naivasha, L.) 123–128 (Springer, 2002).


    Google Scholar
     

  • Alshemmari, H. et al. New and legacy pesticidal persistent organic pollutants in the agricultural region of the Sultanate of Oman. J. Hazard. Mater. 459, 132205 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaoga, J., Ouma, G. & Abuom, P. Effects of farm pesticides on water quality in Lake Naivasha, Kenya. Am. J. Plant Physiol. 8, 105–113 (2013).

    CAS 

    Google Scholar
     

  • Otieno, P. O., Owuor, P. O., Lalah, J. O., Pfister, G. & Schramm, K. W. Impacts of climate-induced changes on the distribution of pesticides residues in water and sediment of Lake Naivasha, Kenya. Environ. Monit. Assess. 185, 2723–2733 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Stempvoort, D. R., MacKay, D. R., Collins, P., Brown, S. J. & Koehler, G. Influence of wetlands on nutrients in headwaters of agricultural catchments. Hydrol. Process. 37, e14866 (2023).


    Google Scholar
     

  • Giri, S. Water quality prospective in twenty first century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 271, 116332 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Bainbridge, Z. T., Brodie, J. E., Faithful, J. W., Sydes, D. A. & Lewis, S. E. Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reef from the Tully – Murray Basin, Queensland, Australia. Mar. Freshw. Res. 60, 1081–1090 (2009).

    CAS 

    Google Scholar
     

  • Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8, 1402–1419 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czub, G. & McLachlan, M. S. A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ. Toxicol. Chem. 23, 2356–2366 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Durand, P. et al. Nitrogen processes in aquatic ecosystems. Eur. Nitrogen Assess. https://doi.org/10.1126/science.333.6046.1083 (2011).

    Article 

    Google Scholar
     

  • Alkemade, R. et al. GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).


    Google Scholar
     

  • Otieno, P., Okinda Owuor, P., Lalah, J. O., Pfister, G. & Schramm, K. W. Monitoring the occurrence and distribution of selected organophosphates and carbamate pesticide residues in the ecosystem of Lake Naivasha, Kenya. Toxicol. Environ. Chem. 97, 51–61 (2015).

    CAS 

    Google Scholar
     

  • Abbasi, Y. & Mannaerts, C. M. Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques. Environ. Monit. Assess. 190, 349 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozorgzadeh, E. & Mousavi, S. J. Water-constrained green development framework based on economically-allocable water resources. Sci. Rep. 13, 5306 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, L. et al. Airsheds, watersheds and more – The flows that drive intra-extra-urban connections, and their implications for nature-based solutions (NBS). Nat.-Based Solut. 2, 100040 (2022).


    Google Scholar
     

  • Svanbäck, A. et al. Reducing agricultural nutrient surpluses in a large catchment – Links to livestock density. Sci. Total Environ. 648, 1549–1559 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Mohamad Ibrahim, I. H., Gilfoyle, L., Reynolds, R. & Voulvoulis, N. Integrated catchment management for reducing pesticide levels in water: Engaging with stakeholders in East Anglia to tackle metaldehyde. Sci. Total Environ. 656, 1436–1447 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abberton, M. et al. Global agricultural intensification during climate change: A role for genomics. Plant Biotechnol. J. 14, 1095–1098 (2016).

    PubMed 

    Google Scholar
     

  • Costa, D., Baulch, H., Elliott, J., Pomeroy, J. & Wheater, H. Modelling nutrient dynamics in cold agricultural catchments: A review. Environ. Model. Softw. 124, 104586 (2020).


    Google Scholar
     

  • UN Water Africa. The Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development. https://www.ircwash.org/resources/africa-water-vision-2025-equitable-and-sustainable-use-water-socioeconomic-development (2000).

  • Wang, X. et al. Effect of river damming on nutrient transport and transformation and its countermeasures. Front. Mar. Sci. 9, 1–17 (2022).

    ADS 

    Google Scholar
     

  • Vilmin, L. et al. Modeling process-based biogeochemical dynamics in surface fresh waters of large watersheds with the IMAGE-DGNM framework. J. Adv. Model Earth Syst. 12, 19 (2020).


    Google Scholar
     

  • Mellander, P. E. et al. Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data. Environ. Sci. Policy 24, 44–57 (2012).

    CAS 

    Google Scholar
     

  • Pärn, J., Pinay, G. & Mander, Ü. Indicators of nutrients transport from agricultural catchments under temperate climate: A review. Ecol. Indic. 22, 4–15 (2012).


    Google Scholar
     

  • Bessah, E. et al. Assessment of surface waters and pollution impacts in Southern Ghana. Hydrol. Res. 52, 1423–1435 (2021).

    CAS 

    Google Scholar
     

  • Verma, A., Sharma, A., Kumar, R. & Sharma, P. Nitrate contamination in groundwater and associated health risk assessment for Indo-Gangetic Plain, India. Groundw. Sustain. Dev. https://doi.org/10.1016/j.gsd.2023.100978 (2023).

    Article 

    Google Scholar
     

  • Government of Kenya. Environmental Management and Coordination (Water Quality) Regulations, 2006 (Cap. 387). 25 (Republic of Kenya, 2015).

  • Imarisha. Imarisha’s Grand Vision for the Lake Naivasha Basin. https://imarishanaivasha.wordpress.com/2015/01/12/imarishas-grand-vision-for-the-lake-naivasha-basin/ (2015).

  • Amayi, M. K. Flower growing firms’ contribution to community water use management in Naivasha Sub County, Kenya. Environ. Chall. 5, 100330 (2021).


    Google Scholar
     

  • Republic of Kenya and WWF. Lake Naivasha basin integrated management plan (draft) 2012–2022. Lake Naivasha Basin Integr. Manag. Plan (Draft) (2012).

  • Food and Agriculture Organization of the United Nations & United Nations Environment Programme. Legislative Approaches to Sustainable Agriculture and Natural Resources Governance, Vol. Study No. 114. (Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 2020).

  • Renner, J. & Opiyo, F. Stakeholders’ interactions in managing water resources conflicts: A case of Lake Naivasha, Kenya. Z Wirtschgeogr 65, 165 (2021).


    Google Scholar
     

  • Lenat, D. R. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. North Am. Benthol. Soc. 7, 222–233 (1988).


    Google Scholar
     

  • Poikane, S. et al. Benthic macroinvertebrates in lake ecological assessment: A review of methods, intercalibration and practical recommendations. Sci. Tot. Environ. 543, 123–134 (2016).

    CAS 

    Google Scholar
     

  • Solimini, A. G. et al. Using benthic macroinvertebrates to assess ecological status of lakes current knowledge and way forward to support WFD implementation. Institute for Environment and Sustainability (2006).

  • M’Erimba, C., Mathooko, J. M., Karanja, H. T. & Mbaka, J. G. Monitoring water and habitat quality in six rivers draining the Mt. Kenya and aberdare catchments using macroinvertebrates and qualitative habitat scoring. Egerton J. Sci. Technol. 14, 81–104 (2014).


    Google Scholar
     

  • Dickens, C. W. S. & Graham, P. M. The South African scoring system (SASS) version 5 rapid bioassessment method for rivers. Afr. .J Aquat. Sci. https://doi.org/10.2989/16085914.2002.9626569 (2002).

    Article 

    Google Scholar
     

  • Kaaya, L. T., Day, J. A. & Dallas, H. F. Tanzania river scoring system (TARISS): A macroinvertebrate-based biotic index for rapid bioassessment of rivers. Afr. J. Aquat. Sci. https://doi.org/10.2989/16085914.2015.1051941 (2015).

    Article 

    Google Scholar
     

  • Masese, F. O., Achieng, A. O., O’Brien, G. C. & McClain, M. E. Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river. Hydrobiologia 848, 321–343 (2021).


    Google Scholar
     

  • Hunt, L. et al. Species at Risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Sci. Tot. Environ. 580, 699–709 (2017).

    CAS 

    Google Scholar
     

  • Lovett, G. M. et al. Who needs environmental monitoring?. Front. Ecol. Environ. 5, 253–260 (2007).


    Google Scholar
     

  • Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).


    Google Scholar
     

  • United Nations Environment Programme. Progress on Ambient Water Quality. Tracking SDG 6 Series: Global Indicator 6.3.2 Updates and Acceleration Needs (2021).

  • Liess, M. & Von Der Ohe, P. C. Analyzing effects of pesticides on invertebrate communities in streams. Environ. Toxicol. Chem. https://doi.org/10.1897/03-652.1 (2005).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

    Related Posts

    ACCI unveils 2025 FarmfaTech Expo to drive food sovereignty through innovation

    Commodities

    My Kitchen Rules star Anthony Michael Mu accused of beating a woman with a metal spatula and throwing a burger at her head

    Commodities

    Reeves eyes cuts to energy and shopping bills to counter tax rises

    Commodities

    Israeli energy minister stalls $35bn natural gas deal with Egypt

    Commodities

    ‘My wife’s obsession with saving energy is turning our home into a sauna’

    Commodities

    West had highest volume of agricultural land sales in 2024

    Commodities
    Leave A Reply Cancel Reply

    Top Picks
    Stock Market

    Utilities Down on Flight From Safe Havens — Utilities Roundup

    Cryptocurrency

    Police urge caution after B.C. resident loses $160K in cryptocurrency scam

    Stock Market

    Indices end at a six-month low amid volatility, Nifty breaches 23,000 intraday for the first time since June 2024

    Editors Picks

    Dow, S&P 500, Nasdaq slide after Powell flags Fed’s challenge, ‘highly valued’ stocks

    September 23, 2025

    Three Laws To Govern Building, Deploying And Scaling AI Systems

    September 15, 2025

    Avec Nickel, on peut créer un compte en Espagne, sans besoin du NIE

    April 6, 2025

    NASENI Enhancing Nigeria’s Agricultural Productivity Through Asset Restoration Programme

    June 11, 2025
    What's Hot

    British Gas giving out £1,700 energy help – and you don’t have to be a customer

    October 29, 2025

    What’s happening with Trump cryptocurrency after he took office?

    January 20, 2025

    Utilities Advance on Defensive Rotation – Utilities Roundup

    March 28, 2025
    Our Picks

    Exploring Three German Dividend Stocks With Yields From 3.2% To 6.8%

    July 29, 2024

    Can China’s Green Electricity Certificates Boost Demand for Renewable Energy? – The Diplomat

    July 27, 2024

    Moroccan Agricultural Excellence Commands Spotlight at Abu Dhabi Global Food Week

    October 23, 2025
    Weekly Top

    Surge in offshore bond sales as UK investors look to cut tax bills

    November 1, 2025

    Why More Americans Are Redefining Retirement, Just Like I Did

    November 1, 2025

    How Advanced Conductors Are Helping Utilities Deliver More Power Quickly

    November 1, 2025
    Editor's Pick

    Russians hit agricultural business in Dnipropetrovsk Oblast, destroying warehouse – photo

    October 10, 2024

    Twisted Metal’s Mike Mitchell Talks Season 2, Stunts in the Wasteland, and More

    August 22, 2025

    AfricArena Lagos 2025 : Les startups ouest-africaines à l’honneur

    May 6, 2025
    © 2025 Invest Intellect
    • Contact us
    • Privacy Policy
    • Terms and Conditions

    Type above and press Enter to search. Press Esc to cancel.